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Introduction

In recent years, heterogeneous distributed systems have more and more displaced
traditional parallel computers as the systems of choice for so-called grand chal-
lenge applications, like, e.g., weather prediction, protein folding, or cell modeling.
In contrast to conventional parallel systems, with their specialized processors and
custom interconnection networks, these novel architectures are characterized by
connecting a (usually) huge amount of standard workstations or clusters, via a
relatively unstructured communication network as, e.g., the Internet.

While this approach, in principle, enables high performance computing at
comparatively low cost, it poses new challenges for the design of algorithms, as
these have to achieve a high scalability even in irregular networks. In fact the main
goal of the currently rapidly evolving areas of Grid computing and Peer to Peer
computing is the development of basic services for such systems.

Basic services like routing, load balancing, data management, or monitoring
are essential for an efficient use of parallel computers as the user, i.e., the pro-
grammer of a parallel application, cannot cope with all details and difficulties of
particular parallel machines.

This thesis provides a theoretical analysis of algorithms for routing and data
management services in large distributed systems. Our algorithms are close to
optimal for any given topology, even for very irregular ones, which means that
they are likely to perform well in modern parallel systems.

A routing service is very fundamental and provides the basic functionality for
exchanging information between nodes of the network. We consider unicast rout-
ing algorithms (in which information is sent from one source to one destination),
as well as multicast routing algorithms (in which information is sent from one
source to possibly several destinations).

A data management service provides access to shared data object that can be
read and written by nodes in the system. Examples for shared data objects are
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global variables in a parallel program, files in a distributed files system, or pages
in the WWW. Compared to routing, a data management service is much more
sophisticated. For example a data management algorithm has to deal with the
following questions.

• Which node should receive a replica of a shared object?

• When should replicas be deleted or migrated to other nodes?

• How can replicas be located efficiently in a dynamic scenario, where the
distribution of replicas in the network keeps changing?

• From which replicas should a given read request for a shared object be
served?

In particular the latter issue shows that data management is somehow a gener-
alization of routing.

We develop strategies for two entirely different scenarios with entirely differ-
ent optimization goals. In the first scenario the goal is to optimize the performance
of a parallel application. For this, it is of major importance to reduce the com-
munication overhead in the interconnection network of the parallel system, as
this is usually the main bottleneck, and thus has a crucial impact on the overall
performance. We do this by minimizing the congestion in the network, that is
the maximum amount of data transmitted by a network link. This cost-measure
guarantees that the communication load is distributed evenly among all network
resources.

We present routing and data management algorithms that for any given
network topology, and any given sequence of requests obtain close to optimum
congestion. Further, our algorithms serve all requests using only local information
stored at the network nodes. This allows an easy and efficient implementation
in a distributed environment. The results for the first scenario are presented in
Chapter 2.

In the second scenario, presented in Chapter 3, we investigate so called util-
ity computing models [JGN99], in which resource usage is not for free, but a
fee is charged dependent on the bandwidth and storage capacity utilized by an
algorithm. These models are mainly motivated by the emerging Grid technol-
ogy which aims at providing standardized and easy-to-use methods for sharing
resources between different institutions and organizations. Currently, these or-
ganizations are mainly from the scientific and educational sector, and therefore
the incentive for sharing resources is usually assumed to be the common inter-
est of all participants. However, with the growing commercial interest in Grid
computing, resources sharing methods based on monetary transactions become
more and more important.
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In such an environment a parallel application may not only be judged upon
its performance, but also upon the monetary cost it induces. We develop data
management strategies that try to minimize the total cost. We consider static data
management strategies, i.e., strategies that for a given request pattern, calculate
a static placement of objects which does not change during the running time of
the parallel application.

We show how to compute a cost-optimal placement for tree networks in poly-
nomial time. For general networks the problem is MaxSNP-hard, which means
that there is no PTAS unless P equals NP. Therefore, we investigate approximation
algorithms for this case. We present an algorithm that calculates a constant factor
approximation of the optimum solution in polynomial time.

1.1 Bibliographical Notes

Most of the results presented in this thesis have been previously published in
preliminary form in various conference proceedings.

In [Räc02] it was proved that for any network topology there exist data
management and routing strategies that always (i.e., for any request sequence)
obtain close to optimum congestion. We improved this result in [BKR03] where
we showed that the data management and routing strategies can be computed
in polynomial time. These two publications form the basis for the results given
in Section Section 2.3.

In Section Section 2.4 it is shown that for the routing problem even the op-
timum strategy (i.e., the strategy with best possible competitive ratio) can be
computed efficiently. This result has been previously published as joint work
in [ACF+03].

The results of the second scenario, where the goal is to minimize the monetary
cost induced by a data management strategy are presented in Chapter Chapter 3.
These results have been previously published in [KRW03].
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Communication-efficient
Data Management Strategies

In this section we develop data management and routing strategies that are
communication-efficient in the sense that they produce only little communica-
tion overhead in the interconnection network of a parallel or distributed system.
This approach is motivated by the observation that, e.g., in most parallel comput-
ers the communication network is the major bottleneck for the performance of the
system, because of an imbalance between low communication bandwidth on the
one side, and relatively high processor speed on the other side.

This imbalance has always been an important issue in the area of parallel
and distributed computing and its relevance has even increased in recent years,
since, for economic reasons, much more industrial effort is made to increase
processor speed than to improve network bandwidth and latency. In particular,
todays low-cost parallel computers that are mostly constructed out of commodity
components, often have serious bandwidth limitations. Another yet even more
important example of bandwidth restricted networks is the Internet, where the
performance of applications as, e.g., the WWW, is nearly completely determined
by network characteristics.

In order to obtain a good performance in such systems it is mandatory to
design applications in a communication-sensitive manner. However, simply min-
imizing the total number of messages in the system, or the total communication
load, i.e., the sum, taken over all messages, of the size of the message multiplied
by the length of the routing path, is not sufficient, as this may result in bottle-
necks. In addition, the communication load has to be distributed evenly among
all network resources. This corresponds to minimizing the congestion which is
the maximum amount of data transmitted by a single network link. Previous
work on routing [LMRR94, SV98] and data management [MMVW97] shows that
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reducing the congestion is very important in order to get a good communication
performance. However, most existing methods for congestion minimization fo-
cus on specific network topologies like fat trees, meshes, hypercubes, etc. For
applications in highly unstructured networks, like the Internet, these methods do
not yield satisfactory solutions.

We propose a basic framework for minimizing the congestion in general
topology networks. At the heart of our framework is a powerful decomposition
technique that makes it possible to transform any given network into a tree net-
work with nearly equivalent communication characteristics (this means the tree
has, e.g., the same bandwidth between node-pairs, the same bottlenecks, etc.).
Due to the simple structure of tree networks many congestion-related problems
can be solved quite elegantly and efficiently for trees. Our decomposition tech-
nique allows it, to transfer such a tree solution to a solution for general topologies
with only a little loss in efficiency. The framework can be applied for any problem
that aims to minimize the congestion and that has an efficient tree solution.

We evaluate our framework on the basis of the following three fundamental
problems from the area of distributed computing: virtual circuit routing, multicast
routing, and data management. For all these problems we get solutions that
work totally distributed and produce only little communication overhead, i.e., the
created congestion is guaranteed to be close to optimal.

2.1 Formal description of the problems

In this section we give a formal description of the problems that we will solve using
our general framework. We model the network as a complete graph G = (V,E).
We use n = |V| to denote the number of nodes in G. Network links are represented
via a weight function b : V × V → R+0 that describes the link capacities between
node-pairs. Usually we assume that the network is undirected, i.e., we assume
b(u, v) = b(v,u) for any two nodes u, v ∈ V.

The common goal for all our problems is to minimize the congestion which is
defined as follows. For a given problem solution, let the (absolute) load of an edge be
the amount of data transmitted by the corresponding network link. Let the relative
load of an edge be its load divided by its bandwidth. We define the congestion of
the problem solution to be the maximum relative load of a network link.

We focus our analysis on the following three problems.

Virtual circuit routing. The first and most basic problem that we consider is the
virtual circuit routing problem. In this problem we are given routing requests
(s1, t1), (s2, t2), . . ., where each request consists of a source node si and a target node
ti. The task is to select a routing path in G for each request that connects the
source to the target. For simplicity we assume a uniform cost model in which
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each routing request is weighted equally, i.e., each request induces load 1 on each
edge of its routing path. The goal is to minimize the congestion.

Multicast routing. The second problem is the multicast routing problem which
is a generalization of virtual circuit routing. In the multicast routing problem we
are given a collection of M multicast groups, each with a source node si ∈ V, 1 ≤
i ≤ M. (Usually the source supplies some information that has to be transmitted
to all members of the corresponding group)

Further, we are given subscription requests that consist of pairs (i, v) with the
meaning that node v ∈ V has to be connected to the i-th multicast group (i.e., node
v wants to get the information supplied by si). For such a request we say that
node v subscribes to multicast group i.

For transmitting data from the source si to the subscribing nodes of a multicast
group, a multicast routing algorithm has to select a Steiner tree that spans the
source and all subscribing nodes. Similar to the virtual circuit routing problem
this increases the load on each edge of the selected tree by 1. The goal is to
minimize the congestion.

An important characteristic of our problem definition is that we do not require
that all subscribers to a specific multicast group appear at once, but subscriptions to
different multicast groups may interleave, arbitrarily. Hence, a routing algorithm
has to build up the Steiner tree incrementally, i.e., it has to connect a subscribing
node to its multicast group without knowing all requests directed to the group.

Data management. The third problem is a data management problem that was
introduced in [MMVW97]. In this problem we are given a set X of shared data
objects, and nodes of the network may issue read or write requests to these objects.
The task is to serve all read and write requests in such a way that the congestion
in the network is minimized.

In general, a data management strategy has to decide where to create copies
of shared objects and when to delete or migrate copies to other nodes. Further,
it has to assign read requests to copies, i.e., it has to decide for every request
from which copy the request is served, and along which path in the network the
corresponding data is transmitted. More precisely, a data management strategy
has to do the following.

• In case of a read request for some object x ∈ X issued at a node v ∈ V, the data
management strategy has to select a path from v to a node u ∈ V holding a
copy of x, along which the content of x is sent to v. This increases the load
on any edge of the path by 1.

• In case of a write request for object x ∈ X issued at node v ∈ V, the data
management strategy has to select a Steiner tree that contains v and all nodes
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holding a copy of x. All copies of x can then be updated along this Steiner
tree. This increases the load on every edge of the Steiner tree by 1.

• We focus on dynamic scenarios, where the distribution of copies is allowed
to change during the running time of an application. For this purpose a data
management strategy may initiate migrations.

During a migration for object x ∈ X a data management strategy chooses
a tree T in G that contains at least one copy of x. Then it changes the
distribution of copies for x within the node set of T (e.g., the strategy may
delete all copies, move a copy to every node of T, etc.). However, the strategy
has to ensure that always at least one copy of x remains in the network. A
migration increases the load on every edge of the selected tree by 1.

• A data management strategy may combine the service of a read or write
request for object x ∈ X with a migration for x. This means when serving,
e.g., a write request it may change the distribution of copies for x within
the node set of the selected update tree without additional communication.
Similarly, when serving a read request it can change the distribution of copies
along the traversed path between the reading node v and the serving node
u.

Note that the above procedure of performing write accesses and migrations
mirrors the fact that we consider writes to be object modifications rather than
overwrites. This means that write accesses cannot be ignored, even in the case
of immediately consecutive writes. Further, new copies (for the case of dynamic
scenarios where placement of copies can change) cannot be created from scratch
but the value to be written has to be merged with the current content of the
global object.

For the initial configuration we define that each object x ∈ X has a home h(x)
that holds the initial copy of x.

Competitive analysis

We analyze our problems in the framework of competitive analysis as introduced
in [ST85]. Our strategies have to work online, i.e., they receive the requests one by
one, in form of a requests sequence. An online strategy has to serve the requests
ad hoc, i.e., a request σi has to be served before the request σi+1 is presented to
the strategy. An online algorithm is said to be c-competitive if for all requests
sequences σ = σ1, σ2, . . .

Conl(σ) ≤ c · Copt(σ) + a , (2.1)

where Conl(σ) and Copt(σ) denote the congestion obtained by the online algorithm
and by an optimal offline algorithm, respectively, for request sequence σ. Ran-
domized algorithms must fulfill this bound with high probability, i.e., they must
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create congestion at most α · (c ·Copt(σ)+ a) with probability at least 1− 1/nα. The
value c is also called the competitive ratio of the online algorithm.

The term a is a constant that does not depend on the request sequence σ, but
may depend on parameters of the network. Thus, the additive term a can dominate
the expression c · Copt(σ) + a for a long time until the request sequence σ reaches
the required length. For the special case that Equation (2.1) holds with a = 0, i.e.,
the congestion of the online algorithm and the optimal congestion always differ
by a factor of at most c, the online algorithm is called strictly c-competitive.

The above description is the standard definition of competitive analysis as in-
troduced in [ST85]. We require that our online algorithms fulfill another property
that is very important for implementations in a distributed environment. Our
online algorithms have to work in a distributed fashion. This means that the
individual nodes do not have information about the global state of the system,
but only have local knowledge that is sent to them via explicit messages, which
of course increase the communication load.

This requirement makes the development of online routing and data man-
agement algorithms a challenging task. However, we have to cope with the
following difficulties.

• For a solution of the virtual circuit routing problem that works in a dis-
tributed environment the routing path chosen for a request may only de-
pend on previous routing requests that are known to the source of the request
(we assume that the source node fixes the whole routing path).

However, we investigate algorithms that are even more restricted. For
an oblivious algorithm the route chosen for a request may not depend on any
other request, which means that routing decisions are completely indepen-
dent from the traffic in the network. Such algorithms can be implemented
very easily and efficiently in a distributed setting. We present oblivious
routing algorithms that for any routing problem obtain close to optimum
congestion.

• In our distributed setting dynamic data management strategies have to deal
with the data tracking problem. In case of a read or write access the strategy
must be able to locate one or all copies in the network by using only local
information stored at the nodes. In [MMVW97] it is shown that this problem
can be solved in a very elegant fashion on tree networks.

We will benefit from this tree solution by transforming it into a solution
on general graphs. This example shows that our approach of simulating tree
strategies on general topologies is very attractive, since it allows to profit
from previous results on tree networks. The development of a distributed
data tracking scheme on arbitrary networks from scratch would have been
very difficult.
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The notion of a request sequence that specifies the order in which requests are
given to a strategy is slightly restrictive since such a model serializes the requests,
i.e., it does not allow parallel and concurrent requests. However, for virtual
circuit and multicast routing, our strategies also work for concurrent requests. (For
virtual circuit routing this is directly clear, since we develop oblivious algorithms.)

For the data management problem we show in Section 2.3.5 how to transform
our results to scenarios in which a certain concurrency among requests is allowed.

2.2 Related work and new results

In this section we give a brief overview on previous work and describe our new
results on the static and dynamic versions of the virtual circuit routing problem,
the multicast routing problem and the data management problem. Note that data
management is a generalization of multicast routing1 and that this, in turn, is a
generalization of virtual circuit routing. Therefore, results for data management
also hold for multicast and virtual circuit routing.

2.2.1 Previous work

Virtual circuit routing. In the offline setting of the virtual circuit routing prob-
lem all routing requests are given in advance, which results in a static optimiza-
tion problem, a so called concurrent multicommodity flow problem (CMCF-problem).
Raghavan and Thompson [RT87] show how to obtain a routing algorithm from a
fractional solution to the CMCF-problem, via randomized rounding. This gives
a centralized offline algorithm that well approximates the minimum possible con-
gestion. Awerbuch and Leighton [AL94] give a distributed algorithm for the
(fractional) CMCF-problem and, hence, obtain a distributed offline solution for
the routing problem.

In the online setting routing requests arrive during the running time and have
to be served “ad-hoc” by an online algorithm. Therefore, a routing path chosen
for a request σi may not depend on a future request σ j, j > i, since this request is
not yet known when σi is served. Leonardi [Leo98] gives an excellent survey on
online network routing that also includes models that do not aim to minimize the
congestion but to maximize throughput, i.e., the number of messages that can be
routed without exceeding the capacity of the network.

Aspnes et al. [AAF+97] design an O(log n)-competitive online routing algo-
rithm for general directed networks. The algorithm assigns a length to every edge

1To see this choose for the i-th multicast group a shared object x with home h(x) = si. Add an initial
write request from node si to x, and transform every subscription request (i, v) to the i-th group into
a read request for x issued at node v. The data management strategy has to select a Steiner tree that
connects all nodes of the multicast group in order to deliver the content of x to all readers.
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e of G that is exponential in the current load of e. When a routing request occurs it
is routed along the shortest path between source and destination, w.r.t. the current
length function. Unfortunately, this approach requires centralized control and seri-
alizes the routing requests, i.e., requests cannot be served concurrently. Awerbuch
and Azar show how to choose the routing path in a distributed and concurrent way
by repeatedly scanning the network. However, their algorithm requires shared
variables on the edges of the network and, therefore, is hard to implement.

Apart from the upper bound, the paper by Aspnes et al. [AAF+97] also gives a
lower bound ofΩ(log n) on the competitive ratio of randomized online algorithms
on certain directed networks. Subsequently, it has been shown independently by
Bartal and Leonardi [BL97], and by Maggs et al. [MMVW97] that a lower bound
of Ω(log n) on the competitive ratio already holds for the 2-dimensional mesh.

In all the above routing algorithms the paths chosen for routing requests de-
pend on other requests, which makes these algorithms adaptive. Oblivious routing
is a totally different approach. For an oblivious algorithm the route chosen for
a request may not depend on any other request, which means that routing deci-
sions are completely independent from the current traffic in the network. In fact,
for an oblivious algorithm a routing path may only depend on the source node,
the target node, and on some random bits for the case of randomized routing
algorithms. Therefore, such an algorithm can be implemented very easily via
routing tables that store at each node v, a probability distribution over paths for
each possible destination node.

Because of their simple implementations, much effort has been made to de-
sign oblivious routing algorithms for specific network topologies. Valiant and
Brebner [VB81] were the first to perform a worst case theoretical analysis for
oblivious routing on the hypercube. They design a randomized packet routing
algorithm that routes any permutation in O(log n) steps. These results give an
O(log n)-competitive virtual circuit routing algorithm, as well. The techniques
developed in this paper, in particular the technique of routing to random inter-
mediate destinations, were later used for efficient permutation routing in many
other networks.

Scheideler [Sch98], e.g., uses the routing number of a network G, which is
defined as the maximum, taken over all permutations, of the minimum amount
of time to route the permutation in G using a best possible strategy. He shows
that for any constant degree network of size n with routing number R, there is an
oblivious algorithm that routes any permutation in time O(R+ log1+ε n) with high
probability. This result is worst case optimal, but for certain routing problems
(such as sending packets to direct neighbors) this bound may be very weak, as
it guarantees no competitive ratio.

In [MMVW97] and [Vöc98] the authors develop data management strate-
gies that aim to minimize the congestion in a large variety of regular network
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topologies, as, e.g., meshes of arbitrary dimension, hypercubic networks, or Caley
networks. Since data management is a generalization of routing, these results
give oblivious routing algorithms with polylogarithmic competitive ratio for the
specified topologies.

Despite of these successes in the design of oblivious algorithms, it was a com-
mon belief that the simple structure of oblivious algorithms would lead to a bad
performance on many networks. This assumption was partly supported by the
fact that deterministic oblivious algorithms perform very poorly, on most topolo-
gies. Borodin and Hopcroft [BH85] have shown that in any network with constant
degree, there is a permutation routing problem that has congestion Ω(

√
n). This

means that, e.g., on a butterfly network, deterministic oblivious routing algorithms
have a competitive ratio ofΩ(

√
n/ log n), as any permutation routing problem can

be solved with congestion O(log n). Further lower bounds on oblivious routing in
the hypercube can be found in [ALMN91] and [KKT90].

Multicast routing. In the offline version of the multicast routing problem it is
not directly possible to use randomized rounding of an optimal fractional solution
to obtain a good approximation. This difference to virtual circuit routing is due
to the fact that a collection of fractional Steiner trees (the output of the fractional
solution for multicast routing), cannot be decomposed into a convex combination
of trees, whereas a collection of flows (fractional solution for virtual circuit routing)
can be decomposed into a convex combination of paths (cf. [AMO93]). Carr and
Vempala [CV02] show how to obtain a convex combination of trees for which
the congestion is only a factor of 2 away from the congestion of an optimum
fractional solution. Applying randomized rounding they get an integral solution
with congestion at most 2 · Copt + O(log n).

In the online version the approach that uses an exponential length function
and returns a minimum spanning tree w.r.t. this function for each request, gives
a competitive ratio of O(log n), exactly as in the virtual circuit routing problem
(see [AAF+97]). For the case of interleaving subscription patterns, Awerbuch and
Azar [AA95] design an online algorithm with competitive ratio O(log n · log d),
where d is the maximum size of a multicast group.

Data management. The problem of distributing and accessing shared objects
in networks has been investigated in various different forms. We first give an
overview over the most important theoretical models and the results obtained
in these models. Then we present the previous work concerning the static and
dynamic data management problem as defined in Section 2.1.

The first work concerning static data management deals with heuristics for
the static file allocation problem, in which files have to be assigned to nodes of a
network, such that a cost function that, e.g., models the communication or storage
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cost is minimized. Dowdy and Foster [DF82] give a survey about several different
models, and describe these models using mixed integer programs with different
cost functions and constraints. Analogously to our static model, all models use the
standard write policy, i.e., a write request has to update all copies of an object and
a read request can be satisfied by any one copy. However, none of the described
models allows that copies are updated via a multicast tree.

Wolfson and Milo [WM91] consider static data management in a model that
allows multicast trees for copy updates and that aims at minimizing the total
communication load. They develop algorithms that calculate optimal placements
for cycles, trees, and complete networks.

Bartal et al. [BFR95] introduce a dynamic variant of the file allocation problem
that is analyzed in an online framework. The main objective in this model is to
minimize the total communication load and not the congestion as in our model.
They obtain a centralized file allocation strategy that achieves optimal competitive
ratio O(log n), and a distributed version that achieves competitive ratio O(log4 n).
Both algorithms are randomized. Subsequently, Awerbuch et al. [ABF93] have
shown that randomization is not crucial. They design deterministic algorithms
that achieve the same bounds as their randomized counterparts. In [ABF98] the
distributed algorithm is also adapted to a model in which the memory capacity
at the network nodes is limited.

The data management problem with the goal to minimize the congestion was
investigated in [MMVW97]. Therein, the authors first design static and dynamic
algorithms for tree networks. They obtain an algorithm that calculates an optimal
solution for the static data placement problem in linear time, and an algorithm
for the dynamic problem that achieves competitive ratio of 3. The latter result is
optimal due to a lower bound of Bartal [BFR95].

The main result of [MMVW97] is a bisimulation technique that makes it possi-
ble to transfer tree solutions for the congestion based data management problem to
other networks. For applying this technique the authors need a hierarchical decom-
position of the network for which a data management strategy has to be designed.
It is shown in [MMVW97] how to obtain such a decomposition for meshes and for
networks that fulfill a certain clustering property. For a d-dimensional mesh, e.g.,
the authors obtain a static data management strategy with approximation ratio
O(d · log n), and a dynamic strategy that is O(d · log n)-competitive. In [Wes00] it
is shown that the approach works for a variety of quite regular networks as, e.g.,
Caley networks and hypercubic networks, as well.

It is conjectured in [Vöc98] that the bisimulation approach can be generalized
to arbitrary networks by designing a suitable decomposition scheme for general
topologies. One consequence of our work is that this conjecture is true for general,
undirected graphs but that it does not hold for directed graphs.

There exist several further extension of the congestion based data manage-
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ment problem. In [MVW99] the model is extended to scenarios where reads and
writes only access a small part of a global object. In this model migration messages
that always affect a whole object, cause more communication overhead than read
or write messages. In [MVW00] and [Wes00] the model is further extended to
incorporate limited memory capacity at the network nodes.

2.2.2 Our results

We generalize the bisimulation technique introduced in [MMVW97] to general
networks. This approach depends on a hierarchical decomposition of the target
network (i.e., the network for which a routing or data management algorithm
has to be designed). We first specify the characteristics that a hierarchical decom-
position has to fulfill in order to allow for good routing and data management
strategies. Then we show that a hierarchical decomposition with these characteris-
tics exists for any undirected network. Moreover, we show that a slightly weaker
decomposition can be constructed in polynomial time.

Based on the decomposition we then develop algorithms for virtual circuit
routing, multicast routing, and data management. For the online versions of
these problems, we obtain a competitive ratio of O(log3 n), with respect to the
congestion of the network links. All algorithms can be implemented efficiently
in a distributed environment.

For the routing problems these results also give polynomial time algorithms
that only create congestion O(log3 n)·Copt+O(log n) for the static problem versions,
when all routing requests are known in advance.2 At first glance, these results may
seem quite unsatisfactory, since, e.g., for virtual circuit routing or multicast routing
the already mentioned results of [RT87] and [CV02] obtain far better bounds
on the congestion. However, the real advantage of our strategies is that they
are extremely fast, once the hierarchical decomposition of the network has been
computed. For the virtual circuit routing problem, for example, the preprocessing
of the hierarchical decomposition gives a unit flow between every pair of nodes. A
routing problem is then solved by scaling each unit flow by the demand between
the corresponding node pair. Obviously this can be performed for all node pairs
in time O(|E| · |D|), where |E| denotes the number of links, and |D| is the number
of node pairs with nonzero demand. This is much faster than solving a fractional
multicommodity flow problem as in [RT87].

For meshes, the uniform bound of O(log3 n) on the competitive ratio is too
large. We show how to obtain an upper bound of O(log n) on the competitive ratio
on meshes of arbitrary dimension. This is done by showing that the properties
of a straightforward decomposition of the mesh, are better than the properties

2However, these results do not give an approximation algorithm. For this one needs to relate Copt to
O(log n) in some way (note that the optimum congestion can be much lower than 1).
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guaranteed by our general decomposition technique. Note that the bound of
O(log n) for d-dimensional meshes improves the bound given in [MMVW97] by
a factor of d.

For the virtual circuit routing problem we also present strategies that do
not depend on a hierarchical decomposition of the target network, but on linear
programming. We show that for any given network we can compute the optimal
oblivious routing scheme in polynomial time.

2.2.3 Further work

The results presented in this thesis have been improved and extended in various
ways by several researchers. Harrelson et al. [HHR03] present an improved
partitioning algorithm that guarantees a competitive ratio of O(log2 n log log n)
instead of O(log3 n) for all our applications.

Applegate and Cohen [AC03] show that the optimal oblivious routing scheme
can be computed by an LP with polynomial number of variables and constraints.
This gives an enormous improvement on the running time compared to our so-
lution that uses the Ellipsoid method.

Moreover, Maggs et al. [MMP+03] have shown that our hierarchical decom-
position can be used to speed up iterative solutions to linear equations.

2.3 Hierarchy-based algorithms

In this section we present data management and routing algorithms that aim to
minimize the congestion and that are based on a hierarchical decomposition of
the target network. Algorithms that do not depend on a hierarchical network
decomposition but on linear programming are presented in Section 2.4.

2.3.1 Preliminaries

We model the network as a complete weighted undirected graph G with node set
V and edge set E = V × V. We use n to denote the cardinality of V, i.e., |V| = n.
Network links are represented via a weight function b : V×V → R+0 that for a pair
of nodes describes the link-capacity between these nodes. If b(u, v) = 0 for two
nodes u and v, then there is no link between these nodes in the physical network.
Note that the graph G is undirected which means that we assume b(u, v) = b(v,u)
for any two nodes u, v ∈ V. Furthermore, we assume that the weight function b
is normalized, i.e., the minimum nonzero capacity of a link is 1. We denote the
maximum capacity of a network link with bmax.

We define a function cap : 2V
× 2V

→ R+0 which for two subsets X,Y ⊆ V
describes the total link-capacity that is available between nodes of X and nodes
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of Y. It is defined as follows:

cap(X,Y) :=
∑

x∈X,y∈Y

b(x, y) .

For a set X ⊆ V we denote the total capacity of edges leaving set X in G with
out(X) = cap(X,X ), where X := V \ X.

2.3.2 The bisimulation technique

In the following we sketch the general concept for solving problems that aim
to minimize the congestion in the communication network of a parallel or dis-
tributed system. The framework describes how to transform a problem solution
for tree networks into a problem solution for general networks with arbitrary edge
capacities. It is based on a bisimulation between the physical network G = (V,E)
and a virtual tree network T = (Vt,Et) that is suitably constructed out of G. The
framework consists of the following three steps.

In a first step it is shown that the tree T can simulate the network G in the
following way. Suppose that we are given a problem instance I on G. We translate
I into a problem instance It on T by mapping nodes of G to nodes of T via a
certain, carefully chosen mapping π1 : V → Vt. Now, we use a solution for I
to derive a solution for It, as follows. Whenever the original solution sends a
message between two nodes u, v ∈ V, a corresponding message is sent between
nodes π1(u), π1(v) ∈ Vt. It can be shown that the congestion produced in T by this
simulation scheme is at most as large as the congestion of the original solution
to I in G.

In a second simulation step we show that there is a probabilistic simulation
of T on the network G such that for every edge of G, the expected load is only
a small factor f larger than the congestion on the tree. More formally, there is
a (randomized) mapping π2 : Vt → V that transforms a problem instance that
can be solved on the tree with congestion Ct, into a problem instance on G that
can be solved such that ∀e ∈ E: E[L(e)] ≤ f · Ct + K, where E[L(e)] denotes the
expected load of an edge e. The term K denotes a constant that does not depend
on parameters of the problem instance, as, e.g., the number of requests, but may
depend on the network G.

For this simulation a node v ∈ V may have to simulate several nodes of
Vt, since usually the virtual tree network contains more nodes than the physical
network G. In addition to the mappingπ2 : Vt → V we describe for this simulation
step how the routing between host nodes in G that simulate adjacent tree nodes
is performed. Note that such a routing definition is not needed for the first
simulation since there is a unique routing path between any two nodes in T. The
exact description of the routing and the definitions of π1 and π2 will be given in
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Section 2.3.4. For the purpose of this section it is only important that π2(π1(v)) = v
holds for each v ∈ V.

The above simulations, i.e., the first two steps of our framework, are com-
pletely independent of the problem that has to be solved. In a final problem-
specific step we use standard techniques from probability theory in order to show
that the result from the second simulation step holds with high probability, i.e.,
∀e ∈ E : L(e) ≤ f ′ · Copt(It) + K′, w.h.p. for some constants f ′ and K′. Note
that this implies that the congestion in G due to simulation of the tree is at most
f ′ · Copt(It) + K′, with high probability.

How do these results help us in solving problems that aim to minimize
the congestion in the network G? A condition for our framework is that the
respective problem can be solved efficiently for trees. Thus, suppose that there
is a tree strategy that for a problem instance It on T, generates a solution with
congestion at most ft · Copt(It) + Kt, where Copt(It) denotes the optimal congestion
that can be achieved for instance It, and ft and Kt denote parameters that only
depend on the network G.

We get a strategy for G as follows. Let I denote a problem instance on G.
First, we translate this problem instance into the corresponding instance It on T
using the mapping π1. Let Copt(I) and Copt(It) denote the optimal congestion for
instances I and It, respectively. Further, let Calg(It) denote the congestion produced
by the tree strategy when solving problem instance It. The first simulation result
and the properties of the tree strategy give

Copt(I) ≥ Copt(It) ≥
1
ft
· Calg(It) − Kt .

Now, we can map the problem instance It and its solution back to the network
G using the mapping π2. Since π2(π1(v)) = v for every v ∈ V we get a solution to
the original instance I on G, as desired. For the congestion Calg(I) of this solution
we have

Calg(I) ≤ f ′ · Calg(It) + K′ ≤ f ′ · ft · Copt(I) + K′ + Kt ,w.h.p.

Hence, we get some bound on Calg(I) in terms of Copt(I).

What are the main challenges for applying this bisimulation approach? The
most important and most difficult part is to choose the virtual tree network T in
such a way that the simulations work properly. Fortunately, this part does not
depend on the concrete problem that has to be solved. It has to be performed only
once for a network G, and then this solution can be used for any problem that
aims to minimize the congestion in G. This basic simulation result is developed
in sections 2.3.3, 2.3.4, and 2.3.6.
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The second task is to transfer the simulation result on the expected load of
the edges of G into a result on the congestion. As stated before, this part uses
standard techniques from probability theory, as, e.g., Chernoff bounds, but the
analysis has to be performed for each problem individually. In Section 2.3.5 this
task is solved for a variety of problems as, e.g., data management, virtual circuit
routing and multicast routing.

2.3.3 The virtual tree network

The virtual tree network that is used for the bisimulation technique described in
the previous section, corresponds to a hierarchical decomposition of the physical
network G. Formally, a hierarchical decomposition H of the graph G is a set
system over the universe V that fulfills the following properties.

• H is laminar, i.e., for two subsets X,Y ∈ H either X \ Y, Y \ X or X ∩ Y is
empty.

• H contains V and all sets {v}, v ∈ V.

Such a hierarchical decomposition describes a partitioning process in which the
graph G is partitioned into smaller and smaller subgraphs until the remaining
subgraphs contain only a single node of G. There is a natural tree associated to
this decomposition, in which each node represents a subgraph and the children of a
node represent the subgraphs that result from partitioning the parent. Essentially
our virtual tree network used for the simulations will be such a natural tree,
corresponding to a specific hierarchical decomposition H. However, for technical
reasons we add the following extra nodes. For each edge (u, v) of the tree we add
an intermediate node x and replace edge (u, v) by edges (u, x) and (x, v). The tree
TH obtained by this process is called the decomposition tree corresponding to the
hierarchical decomposition H.

In order to introduce all terms and definitions properly we define the decom-
position tree TH = (Vt,Et) more formally. The node set Vt = VN

t ] VI
t of the tree

consists of a set VN
t of natural nodes and a set VI

t of intermediate nodes. For each set
H , V from the laminar system H the tree contains two nodes; a natural node vn
and an intermediate node vi. We call H the set or cluster corresponding to vn and
vi. Further, vn and vi are called the natural node and intermediate node, respectively,
corresponding to cluster H. For H = V the tree contains only a natural node.

In the following the cluster corresponding to a node v ∈ Vt will be denoted
with Hv. A natural node vn and an intermediate node vi in TH are connected if
either Hvn = Hvi , or if Hvi ( Hvn and if there is no H ∈ H such that Hvi ( H ( Hvn .
Note that by this definition TH is indeed a tree, since H is a laminar system. We
assume TH to be rooted at the node corresponding to cluster V. By this definition
the root and the leaves of TH are natural nodes and the leaves correspond to
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Figure 2.1: A hierarchical decomposition of a graph and the associated decompo-
sition tree. Large circles in the right figure represent natural nodes while small
circles represent intermediate nodes.

sets {v}, v ∈ V, i.e., there is a one-to-one relation between nodes of G and leaf
nodes of TH.

It remains to define the bandwidths for the edges of the decomposition tree.
An edge (vn, vi) ∈ Et is assigned a bandwidth of bt(vn, vi) := out(Hvi ), i.e., the
bandwidth of all edges leaving the cluster corresponding to the intermediate
node of the edge.

We define levels for nodes and edges in TH, as follows. The level of a node
vt of TH is defined as the number of natural nodes on the path from vt to the
root, not counting vt. The level of an edge (vn, vi) ∈ Et is defined as the level of
the natural node vn of the edge. Further, we define the level of a cluster H of
the laminar system as the level of a corresponding node in TH. (Note that both
nodes corresponding to H are on the same level.) Finally, we say that an edge e
of G is cut on level ` ≥ 1 if both endpoints of e are contained in the same level
` − 1 cluster but in different level ` clusters. We use level(e) for an edge e ∈ E to
denote the level on which e is cut. Figure 2.1 gives an example of a hierarchical
decomposition and the corresponding decomposition tree.

So far, we have described the general structure of the virtual tree network,
namely that it is a decomposition tree for some hierarchical partitioning H. In
Section 2.3.4 we will show that every decomposition tree can simulate the physical
network G, i.e., the first simulation step works regardless of how we choose H.
Now, we define a parameter for a hierarchical partitioning that somehow measures
how well the second simulation step works, i.e., how well the corresponding
decomposition tree can be simulated by G. Then, in Section 2.3.6, we will show
how to construct a partitioning for which this parameter has a good value.
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In order to specify our parameter, we first introduce a weight function
w` : 2V

→ R+0 for each level ` ∈ {0, . . . ,height(TH)} of the decomposition tree,
as follows:

w`(X) :=
∑

e∈X×V
level(e)≤`

c(e) .

Informally speaking, the weight function w`(X) counts for a subset X, the capacity
of all edges that are adjacent to nodes in X and are cut before, or at level `
in the hierarchical decomposition. The following properties of w` will be used
intensively throughout this chapter. First of all w` is additive, i.e., for a set X =
X1 ]X2, w`(X) = w`(X1) +w`(X2). Furthermore, for a level ` cluster Hvt we have
w`(Hvt ) = out(Hvt ). Finally, w`−1(X) ≤ w`(X) holds for any ` ∈ {1, . . . ,height(TH)}.

We define a fractional concurrent multicommodity flow problem (CMCF-
problem) for each cluster of the hierarchical decomposition, as follows. Let Hvt

denote a level ` cluster of H. The CMCF-problem for Hvt has a commodity du,v
for each (ordered) pair u, v ∈ Hvt . The source for commodity du,v is u, its sink
is v and its demand is

dem(u, v) :=
w`+1(u) ·w`+1(v)

w`+1(Hvt )
. (2.2)

Let cvt denote the minimum possible edge congestion that can be achieved
for a solution that routes all these demands using only edges inside Hvt . Note
that we may route fractionally and, hence, the value of cvt can be computed by
solving a linear program. We define cH := maxvt∈Vt cvt as the maximum edge
congestion that is needed for a CMCF-problem of a cluster of the hierarchical
decomposition H.

This parameter cH will turn out to be very important for the second simulation
step. Let δH denote the factor between the expected load on edges in G and the
congestion in the tree for this simulation. In the following section it is shown that
there is a simulation such that δH = O(cH · height(TH)).

2.3.4 Simulation results

In this section we show how the bisimulation between G and TH works.

Simulating G on TH

The simulation of the network G on a decomposition tree TH works as follows.
Suppose that we are given a problem instance I on G that can be solved with
congestion C. We get a problem instance on TH by mapping each node v ∈ V to
the leaf node in TH that corresponds to cluster {v}. Now, for every message that
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is sent between nodes u and v in the solution to I on G, we send a message along
the unique shortest path connecting the respective counterparts in TH.

The following theorem states that this simulation does not increase the con-
gestion.

Theorem 2.1 Let I denote a problem instance on G that can be solved with congestion
C and let It denote the corresponding instance on TH. Then the instance It can be solved
with congestion Ct ≤ C.

Proof. We show that the above simulation produces congestion at most C. Let
et = (vn, vi) denote an edge of TH that connects a natural node vn to an intermediate
node vi and that has relative load Ct, due to the simulation. Then, the absolute
load of et is Ct · bt(et).

Now, consider the congestion produced by the corresponding solution to I on
G. Any message that crosses edge et in TH has either to leave or to enter the cluster
Hvi . The total bandwidth of all edges leaving cluster Hvi is out(Hvi ) = bt(et). Hence,
one of those edges must have relative load Ct · bt(et)/out(Hvt ) = Ct. Therefore,
C ≥ Ct.

Simulating TH on G

In this section, we show that the decomposition tree TH can be simulated on the
network G such that for every edge of G the expected relative load is small.

We first try to develop an intuition for the decomposition tree and the role
of the hierarchical partitioning H. The clusters in H can be viewed as potential
bottlenecks in the network G. Of course, it may or may not happen that a cluster
H ∈ H becomes a bottleneck for a specific problem instance. For example, if
we deal with the problem of virtual circuit routing, and the problem instance
consists of sending messages to direct neighbors, there is no bottleneck at all, and
therefore no set in H is a bottleneck.

But we will show that, if there is a bottleneck in the system, then at least one of
the sets in H is an approximate bottleneck, where the quality of the approximation
depends on the value of cH.

Since the clusters in H form bottlenecks in G the simulation tries to avoid
creating too much load on edges that leave or enter subsets of H. This leads to
the following basic rules for the simulation.

• Only send a message across a cut (Hvi ,Hvi ) if the tree solution sends a
corresponding message to intermediate node vi.

• Distribute the messages that leave a cluster H ∈ H evenly among all edges
that connect H to the rest of the graph.
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Note for the first rule that if the tree solution sends a message to vi, then this
causes load on an edge incident to vi in the tree. Such an edge has bandwidth
out(Hvi ). Therefore it is possible to amortize the load created in G by sending
a message over the cut (Hvi ,Hvi ), which has capacity out(Hvi ), against the load
created in TH.

Now, we give a formal description of the simulation. Each node of the
decomposition tree is simulated by a random node of the corresponding cluster.
The exact probability distribution depends on the type of the node and on its
level in the tree. The probability that a node u ∈ Hvi is chosen for simulating an
intermediate tree node vi on level ` is

w`(u)
w`(Hvi )

.

The probability that a natural level ` node vn is simulated by u ∈ Hvn is

w`+1(u)
w`+1(Hvn )

.

The intuition behind these values is as follows. For an intermediate node vi
the probability distribution is according to the weight of edges that leave or enter
cluster Hvi . (Recall that w`(Hvi ) counts the capacity of all edges that leave Hvi .)
This somehow reflects the first rule. If the tree solution sends a message to vi, then
we can afford to send a message to the border nodes of Hvi , i.e., nodes of Hvi that
have incident edges that leave the cluster.

For a natural node vn the probability distribution is with respect to edges that
leave or enter subclusters of Hvn . This is reasonable because a message that is
sent to vn probably comes from a child node in the tree. Since these child nodes
are embedded with respect to the weight of edges leaving the respective cluster,
the distribution for vn ensures that child node and father node are embedded
“close to each other”.

In order to complete the description of the second simulation step we have to
specify how the routing between nodes in G that simulate adjacent tree nodes is
performed. Let et = (vi, vn) denote a tree edge in TH, where vi is the intermediate
node and vn is the natural node of the edge. Further, let ui and un denote the node
in G that simulates vi and vn, respectively. Note that for the clusters corresponding
to vi and vn we have Hvi ⊆ Hvn and therefore, ui,un ∈ Hvn .

We choose a routing path between ui and un according to the solution of the
CMCF-problem on cluster Hvn . For this we decompose the flow for commodity
dui,un into a convex combination of paths between ui and un. (see [AMO93] for
the idea of flow decomposition). This means we compute a path system Pui,un

that contains paths between ui and un and assign a weight weight(p j) to every
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p j ∈ Pui,un . Let Fui,un (e) denote the flow that passes edge e for commodity dui,un in
the solution of the CMCF-problem for Hvn . The flow decomposition ensures that∑

j : e∈p j

weight(p j)

weight(Pui,un )
= Fui,un (e),

where weight(Pui,un ) denotes the sum of the weights of all paths in Pui,un .
The routing paths are chosen as follows. Whenever a message is sent along

edge et in the tree we randomly select a path p ∈ Pui,un according to its weight (i.e.,
Pr[p is chosen] = weight(p)/weight(Pui,un )), and then we send a corresponding
message in G between ui and un along this path.

The following theorem captures the main result of our bisimulation frame-
work. It shows that the expected load of an edge due to the above simulation
of TH on the network G is only a small factor larger than the congestion on the
tree network.

Theorem 2.2 Let Ct denote the congestion for the tree solution to problem instance It on
TH. The expectation of the relative load L(e) of an edge e of G due to the simulation is
bounded by

E[L(e)] ≤ δH · Ct ,

where δH := 2 · height(TH) · cH.

Proof. Let L`(e) denote the load of an edge e due to the simulation of level `
edges of TH and let Labs

`
(e) denote the corresponding absolute load. We show that

E[L`(e)] ≤ 2cH Ct, which yields the lemma.
Fix a level ` and an edge e = (x, y) ∈ E. We analyze the expected load that is

created on e due to the simulation of level ` edges of TH. A level ` edge of the tree
connects a natural node on level ` to an intermediate node either on level ` or on
level ` − 1. The simulation of a level ` edge (vi, vn) only induces load on e if both
endpoints x and y of e lie in the cluster Hvn that corresponds to the natural node vn
of the edge. This holds because the routing paths between the nodes simulating vi
and vn do not leave the cluster Hvn , since in the definition of the CMCF-problem
for Hvn the flow is restricted to use only edges inside Hvn .

Now, let vn denote a natural level ` node such that x, y ∈ Hvn . (If no such
node exists E[L`(e)] = 0.) Further, let Vi denote the set of intermediate nodes
that are adjacent to vn. We say that a tree edge (vi, vn), vi ∈ Vi is mapped to a
pair (u1,u2) ∈ Hvn × Hvn iff vi is simulated by u1 and vn is simulated by u2. The
simulation of edge (vi, vn) creates load on e if (vi, vn) is mapped to a pair (u1,u2)
and e is contained in the randomly selected path between u1 and u2. In this case
at most Ct · bt(vi, vn) messages are routed along e for simulating (vi, vn), since the
relative load of a tree edge is at most Ct. Hence, we get the following bound for
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E[Labs
`

(e)].

E[Labs
` (e)] ≤

∑
(u1,u2)

∑
vi∈Vi

Pr[(vi, vn) mapped to (u1,u2)] · Pr[u1-u2 path contains e] · Ct bt(vi, vn)

(2.3)
Let p denote the parent node of vn in the tree, and let v1 denote the child node
such that u1 ∈ Hv1 . Since the node of G that simulates a node vi is always from the
cluster Hvi the probability Pr[(vi, vn) is mapped to (u1,u2)] is zero if vi < {v1, p}. From
the definition of the decomposition tree and the simulation it follows that

Pr[(v1, vn) is mapped to (u1,u2)] · bt(v1, vn)

=
w`+1(u1)

w`+1(Hv1 )
w`+1(u2)

w`+1(Hvn )
· w`+1(Hv1 )

=
w`+1(u1) ·w`+1(u2)

w`+1(Hvn )
,

and

Pr[(p, vn) is mapped to (u1,u2)] · bt(p, vn)

=
w`(u1)
w`(Hp)

w`+1(u2)
w`+1(Hvn )

· w`(Hp)

≤
w`+1(u1) ·w`+1(u2)

w`+1(Hvn )
.

Plugging these results into Equation (2.3) gives

E[Labs
` (e)] ≤

∑
(u1,u2)

Pr[u1-u2 path contains e] · 2Ct ·
w`+1(u1) ·w`+1(u2)

w`+1(Hvn )
.

Since the routing path between u1 and u2 is chosen according to the solution of
the CMCF-problem for Hvn we know that

Pr[u1-u2 path contains e] ≤
Fu1,u2 (e)

dem(u1,u2)
,

where Fu1,u2 (e) is the amount of flow of commodity du1,u2 that passes e, and
dem(u1,u2) is the total value of flow between u1 and u2 as defined in the CMCF-
problem. This demand is defined as dem(u1,u2) = w`+1(u1)·w`+1(u2)

w`+1(Hvn ) (see Equa-
tion (2.2)). Hence, we get

E[Labs
` (e)] ≤ 2Ct ·

∑
(u1,u2)

Fu1,u2 (e) ≤ 2Ct · cH · b(e) ,
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where the last step follows from the definition of cH, because
∑

(u1,u2) Fu1,u2 (e) is
the absolute load on edge e in the solution to the CMCF-problem. Clearly, the
above inequality gives E[L`(e)] = 2 cH · Ct for the relative load L`(e) of edge e.

2.3.5 Applications

So far, we have shown that TH can be simulated on G such that for every edge of
the network the expected load remains small. In order to obtain a result on the
congestion of the simulation we have to show that this simulation technique can
be adapted such that the load of any edge does not deviate too much from its ex-
pectation. This cannot be done in a problem-independent manner but the analysis
has to be performed for each problem separately. In the following we show results
for virtual circuit routing, multicast routing and data management. For some of
these problems we further differentiate into static and dynamic settings. For every
problem that we consider, we show how to obtain an efficient tree solution and
how to modify the simulation such that it gives a result on the congestion.

For analyzing the latter part we use standard tail inequalities from probability
theory that are known as Chernoff-Hoeffding bounds. We use the following form
which is due to Hoeffding [Hoe63].

Lemma 2.3 ([Hoe63]) Let X1, . . . ,Xn be independent random variables that take values
in the range [0,W] for some W > 0. Let X =

∑n
i=1 Xi, µ ≥ E[X]. Then for δ ≥ 1,

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ/W
≤ e−

δµ
3W .

Corollary 2.4 Pr[X ≥ 2µ + kW] ≤ e−k/3.

Proof. We choose δ = 1 + W
µ k in the above lemma. This gives Pr[X ≥ 2µ + kW] ≤

e−(1+Wk/µ)µ/(3W)
≤ e−k/3, as desired.

Virtual circuit routing

In the virtual circuit routing problem the task is to select routing paths between
source-target pairs in such a way that the link congestion in the network is min-
imized.

The tree solution for this problem is straightforward. Simply, route a request
(s, t) between source node s and target node t along the unique shortest s-t path
in the tree. Obviously, this strategy minimizes the congestion in the tree network.
Note that in the tree instance of the routing problem there are only routing requests
between leaf-nodes of the tree.
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The important observation for adapting the simulation technique is, that in the
routing problem the internal tree nodes do not carry any information. Therefore,
for each routing request a new random embedding of these nodes in the network
G can be used. Let Li(e) denote a random variable describing the load on edge e ∈ E
due to the routing of the i-th request σi. Since we use a new random embedding for
each request the variables Li(e) are independent. Further, we restrict the routing
algorithm to use only simple paths. (If according to the simulation scheme the
routing algorithm would have to use a path that contains some nodes twice, the
algorithm computes a corresponding simple path and uses this path, instead. This
does not increase the expected load on any edge.) Then, the load L(e) =

∑
i Li(e)

of edge e is a sum of independent random variables in the range [0, 1/b(e)] with
expectation at most δH · Ct.

We can apply Corollary 2.4 with µ = δH ·Ct and W = 1/b(e) to this sum. This
gives that the load of edge e is smaller than 2δH ·Ct+α log n/b(e) with probability
at least 1 − n−α/3. Since this holds for every edge e we can apply a union bound
which gives the following bound for the congestion Calg of our routing algorithm.

Calg ≤ 2δH · Copt + α log n with probability at least 1 − n−Ω(α) . (2.4)

Here we utilized Ct ≤ Copt, which holds due to the first simulation, and b(e) ≥ 1,
which holds due to the normalization of edge-capacities in G. We get the following
lemma.

Lemma 2.5 Given a graph G and an associated decomposition tree TH there exists an
oblivious routing algorithm that is O(δH)-competitive with respect to the congestion.

Note that the routing algorithm chooses each path independently from all other
paths. Hence it is indeed oblivious, as stated in the lemma.

By utilizing the results of Section 2.3.6 on δH, the above lemma shows the
existence of an O(log3 n)-competitive, oblivious routing algorithm for general net-
works. In Section 2.4 we show that such an algorithm can be constructed in
polynomial time.

In [Räc02] it was erroneously claimed that the routing algorithm is strictly
O(δH)-competitive. This does not hold in general but depends on the value of
the maximum bandwidth bmax of an edge of G. This can be seen as follows.
Under the condition that α ≥ 2 and δH ≥ log n (follows from Section 2.3.6) we
can transform Equation (2.4) into

Calg ≤ α δH · Copt · bmax + α · δH with probability at least 1 − n−Ω(α) .

Now, we can utilize that Copt · bmax ≥ 1 and we get that

Calg ≤ δH · (bmax + 1) · Copt ,w.h.p. ,



www.manaraa.com

2.3.5 Applications 27

which means that the algorithm is strictly O(δH ·bmax)-competitive. In Section 2.5
it is shown that, in general, the competitive ratio of a strictly competitive routing
algorithm depends on bmax.

Note that in the above discussion we did not specify if the routing requests are
given in advance or are given to the algorithm in form of a request sequence that
has to be processed in an online fashion. This was not necessary since our routing
algorithm is oblivious and, hence, works for online as well as for offline scenarios.

There are further interesting application of the hierarchical decomposition
and the decomposition tree for static routing problems. In the fractional concurrent
multicommodity flow we are given demands between pairs of vertices and the
task is to establish a flow of the specified value between each pair such that
the link congestion is minimized. This problem can be solved or approximated in
polynomial time using, e.g., linear programming techniques (see [AMO93, GK98]).

Our algorithm solves this problem as follows. It first precomputes a flow
of value 1 between every pair of nodes. This flow acts as a routing rule that
describes how the demand between the corresponding node pair has to be routed.
Then, when the algorithm receives the demands of the CMCF-problem it outputs
a solution in time O(|E| · |D|), where |E| is the number of edges in G with nonzero
capacity, and |D| is the number of demands. The congestion of this solution is
only a polylogarithmic factor away from the congestion of an optimal solution.
Hence, the technique makes it possible to speed up approximate solutions to
CMCF-problems, if several instances have to be solved for the same network.

The sparsity of a cut in G for a routing problem is the ratio between the capacity
of the cut and the total demand of all source-target pairs that are separated by
the cut. A sparsest cut is a cut with minimum sparsity. The decomposition tree
TH of a network G can be used to find an approximate sparsest cut for a given
routing problem. The algorithm works as follows. Compute the sparsity of every
cluster in the hierarchical decomposition H and output the cluster with minimum
sparsity. The following lemma shows that the returned cut is an approximate
sparsest cut with approximation ratio δH.3

Lemma 2.6 Let φH denote the minimum sparsity of a cluster in H, and let φmin denote
the sparsity of a sparsest cut in G. Then

φH ≤ δH · φmin .

Proof. Let H denote a cluster in H, and let vn and vi denote the natural and
intermediate node, respectively, corresponding to H. The sparsity of H is the
capacity of edges that connect H to the rest of the graph, divided by the demand

3Intuitively, this fact means that the hierarchical decomposition contains all potential bottlenecks of
a network. Whenever there is a bottleneck (i.e., a cut with low sparsity), one of the clusters in H is
a bottleneck, as well.
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of all messages that leave or enter H. This is exactly the inverse of the relative
load of the edge (vn, vi) in the tree solution, because every message that leaves or
enters H traverses this edge, and the capacity of the edge is out(H). This means
that finding the cut with minimum sparsity in H is the same as finding the edge
with maximum relative load in TH. This edge determines the congestion Ct of the
tree solution, and therefore φH = 1/Ct.

The congestion that is needed for solving the routing problem in G is at least
1/φmin. In Theorem 2.2 it is shown that it is possible to solve the routing problem
with expected load E[L(e)] ≤ δH ·Ct on any edge e ∈ E. If we route fractionally we
can achieve this bound. Therefore

δH · Ct ≥ 1/φmin .

Now, φH = 1/Ct yields φH ≤ δH · φmin, as desired.

The algorithm for finding the sparsest cluster in H can be implemented in time
O(|R| · height(TH) + n), where |R| denotes the number of routing requests for the
routing problem. This holds because each routing request increases the load on
at most 2 height(TH) tree edges, and the maximum loaded tree edge can be found
in time O(n), since there are only O(n) edges.

Multicast routing

In the multicast routing problem we are given a collection of M multicast groups,
each with a different source si, 1 ≤ i ≤ M. Further we are given subscription
requests that consist of pairs (i, v) with the meaning that node v ∈ V has to be
connected to the i-th multicast group. For such a request we say that node v
subscribes to multicast group i. The task is to select for each group a Steiner tree
that spans the source and all subscribing nodes in such a way that the congestion
is minimized.

On the tree, the multicast routing problem is solved as follows. At any time
the nodes that already have subscribed to a multicast group are connected via
the minimum Steiner tree connecting these nodes to the source. When a tree
node v issues a subscription request for the group, it sends a message in the tree
towards the source of the group. At some point this message reaches a node u of
the current Steiner tree. Augmenting the Steiner tree with the path from v to u
gives the minimum Steiner tree that contains the source, all previous subscribers,
and the new subscriber v. These steps can be performed totally distributed, since
they only require local information stored at the visited tree nodes. The solution
achieves optimal load on every edge of the tree and, hence, also optimal congestion.
Further, this solution works for concurrent subscription requests, as well.

Now, we show how to adapt the second simulation in order to get a result
on the congestion. The only information that is needed at internal tree nodes in
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the tree solution is whether the node already belongs to the Steiner tree of the
respective multicast group. Therefore we can use a different embedding of the
decomposition tree for each multicast group.

Let Li(e) denote a random variable describing the load on edge e ∈ E due to
the simulation of the i-th Steiner tree in TH on G. Note that in G the subgraph that
connects the subscribers of a multicast group to the source, needs not to be a tree
because of the simulation. This is similar to the virtual circuit routing problem,
where a path selected according to the simulation needs not to be a simple path.
Therefore, we change the simulation and allow messages to take shortcuts. This
means, if a message for group i that is sent to a host for tree node vt finds that the
just visited node v on its path already belongs to the tree for the i-th group, it does
not continue on its way to vt, but it simply connects to v forming a new legal tree
for the i-th multicast group. This adaption of the simulation does not increase the
load on any edge. Now, the load L(e) =

∑
i Li(e) of an edge is a sum of independent

random variables in the range [0, 1/b(e)], and we can apply Corollary 2.4 exactly
as for the case of virtual circuit routing. This gives the following lemma.

Lemma 2.7 Given a graph G and an associated decomposition tree TH there exists a
distributed multicast routing algorithm that is O(δH)-competitive with respect to the
congestion. The algorithm also works for concurrent multicast requests.

For the case of ordinary routing problems, i.e., exactly one source and one
target for each request, we have shown in the previous section how to obtain very
fast approximation algorithms for the static, fractional problem version when
the decomposition tree TH is known. The same works for multicast routing, too.4

Applying our simulation technique gives an O(δH)-approximation algorithm with
running time O(|R|·|E|), where |R|denotes the number of multicast routing requests.

Interestingly, there is a related cut problem, as well. Let for a cut (S, S̄ ) and a
given multicast routing problem, dem(S, S̄ ) denote the number of routing requests
such that both sides of the cut contain at least the source or a subscribing node of
the request. Define the (multicast)-sparsity of the cut (S, S̄ ) as cap(S, S̄ )/dem(S, S̄ ).
This is the straightforward extension of the sparsity of a cut to the multicast setting.
The following lemma does not only show that the hierarchical decomposition H

always contains a cluster with approximately minimum multicast sparsity, but
it also relates the minimum multicast sparsity to the congestion of an optimal
solution of the routing problem. Such relationships, i.e., generalizations of the
max-flow min-cut theorem, are called approximate max-flow min-cut relation-
ships, and play an important role in the design of approximation algorithms (see,
e.g., [LR99]). It is well known that an approximate max-flow min-cut relation
holds between the congestion for concurrent multicommodity flow problems and

4Fractional for the case of multicast routing means that a multicast routing request can be served by
a fractional Steiner tree connecting the source to all subscribers.
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sparsest cuts (see [LR99, KPR93, LLR95, AR98]). To our knowledge this is the
first result that shows a polylogarithmic max-flow min-cut relation for multicast
routing problems.

Lemma 2.8 Let φH denote the minimum multicast sparsity of a cluster in H, and let
φmin denote the multicast sparsity of a sparsest cut in G. Then

φmin ≤ φH = 1/Ct ≤ δH · 1/Copt(G) ≤ δH · φmin ,

where Ct and Copt(G) denote the optimal congestion for the routing problem on the tree
network and on the physical network, respectively.

Proof. The proof is similar to the proof of Lemma 2.6. We only need to show
φH = 1/Ct, as the third inequality follows from Copt(G) ≤ δH · Ct (follows from
Theorem 2.2), and the remaining inequalities are obvious.

Let H denote a cluster in H, and let vn and vi denote the natural and interme-
diate node, respectively, corresponding to H. The multicast sparsity of H is the
capacity of edges leaving H, divided by the number of all requests for which both
H and V \ H contain at least one node that has to be connected in the multicast.
Exactly these requests create load on (vn, vi) in the tree solution of the routing
problem. Therefore, the multicast sparsity of H equals the inverse of the relative
load of the tree edge (vn, vi). This gives φH = 1/Ct, as desired.

Data management

For the dynamic data management an efficient tree solution was presented in
[MMVW97]. This solution is totally distributed and achieves a competitive ra-
tio of 3.

The task of adapting the simulation technique such that it gives a result on
the congestion is considerably more difficult for the data management problem
than for the virtual circuit routing problem or the multicast routing problem. The
reason is that in the solution to the data management problem the internal nodes
of the decomposition tree store information, namely copies of shared data objects
and/or pointers to other copies in the network. Therefore, it is not possible to
use a new embedding of the whole decomposition tree for every request but one
has to carefully define when to change the embedding of a tree node because
the stored information has to be transferred to the new host. These migration
messages increase the congestion in the network and have to be taken into account
for the analysis.

We adapt the simulation technique, as follows. First of all we use a different
embedding of the decomposition tree for each shared object. This is possible
because the dynamic tree strategy handles each object independently from other
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objects.5 Furthermore, we change the embedding of a tree node for object x, when-
ever too many access messages for object x, i.e., messages that simulate messages of
the tree strategy, traverse the node. We call such a modification of the embedding
a remapping. It is performed as follows.

For every object x, and every node vt ∈ Vt we introduce a counter τ(x, vt).
Initially the counter is set to zero and it is increased whenever an access message
for object x starts at node vt, arrives at vt, or traverses vt. The host node of vt for
object x is changed whenever the counter reaches the value D, i.e., the maximum
degree of a node in the decomposition tree TH. In this case the old host node first
selects a new host according to the probability distribution for node vt. Then it
sends a migration message to the new host that contains all relevant information
for the corresponding object, as, e.g., links to other copies, or the actual data
associated with the global object. Finally, in order to ensure an efficient search
for data in the network, the old host establishes a pointer to the new host. Note
that after several remappings, this process may create a sequence of pointers that
connects several outdated hosts and leads to the current host node.

For our analysis we assume that a migration message increases the load on
every edge of the traversed path by one. This assumption is justified in our
uniform model, since the transmitted information mainly consists of the data
content of a single global object. Therefore a migration message costs as much
as a read or write message to a shared object. Note that this assumption of
uniform cost for a migration message is only reasonable because we use a different
embedding for every object, and therefore a migration message does not need to
contain much information.

The search operation for the current position of a host node works as follows.
If an access message arrives at a host node that has been remapped it follows the
sequence of pointers to reach the new host. After that, it informs all outdated
host nodes on the traversed path, and the origin node of the access message about
the current position of the host. Note that the access message itself may cause
another remapping. For this case, we define that already the new position of the
host node, i.e., the position after the remapping, is reported back to the origin.

We call messages along the pointer sequence from an old host to a newer
host search messages. We analyze the expected load generated by migration and
search messages.

First, consider an intermediate node vi on level ` of TH. The expected load
generated by migration and search messages for vi can be estimated as follows.
Since vi has only two incident edges both with capacity out(Hvi ), the total number
of access messages that reach vi is bounded by 2 · Ct · out(Hvi ), where Ct denotes
the congestion of the tree solution. The same bound holds for the number of

5If a request for object x would at some internal tree node require information stored for object x, and
information stored for object y, it would be problematic to use different embeddings for x and y.
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migration messages for vi because each migration message is caused by some
access message that traverses vi.

The neighbor of vi that has sent the latest access message always knows about
the current position of the host. Only the other neighbor may initiate a search
operation to find the new host. However, for each migration message at most one
search message is sent. Therefore, the total number of search messages for vi is
bounded by 2 · Ct · out(Hvi ), too.

We choose the routing paths for search and migration messages for vi as
follows. Let vn denote the child node of vi in the tree. Due to the definition of the
decomposition tree, vn is a level ` node and it holds that Hvi = Hvn .

For a search/migration message between an old host h ∈ Hvi and a new
host h′ ∈ Hvi , we choose a random intermediate node x from Hvi such that
Pr[x is chosen] = w`+1(x)/w`+1(Hvi ). Then we route the message from h to x and
then from x to h′ using the routing paths of the CMCF-problem for cluster Hvi .

Since x is chosen with the same probability distribution as the host node for
vn, we have that the expected load created by a search/migration message on
some edge e is exactly twice the expected load created by an access message that
traverses edge (vn, vi) in the tree.

In Section 2.3.4 it was shown that the expected load generated by a single
access message along this edge is only cH/out(Hvi ). Consequently, the expected
load created for search/migration messages is at most 8 cH Ct, as there are only
4 ·Ct ·out(Hvi ) messages and each creates only twice the load of an access message.

Now, consider a natural node vn on level ` of TH. Let a denote the number of
access messages that traverse vn during the running time of the parallel application.
These messages induce at most a/D migration messages. Therefore, at most a/D
new host nodes for vn are generated. (The total number of host nodes for vn can be
much larger, namely as large as |X|+ a/D, where |X| denotes the number of global
objects.) Each new host node h receives at most D − 1 search messages, because
after D − 1 messages every node that simulates a neighbor of vn in TH knows
about the migration to h. (The node that sent the access message that caused
the migration to h is informed directly and will never send a search message.)
Hence, the number of search/migration messages sent for node vn is at most a.
The expected number of messages sent between a pair (x, y) ∈ Hvn ×Hvn is

w`+1(x)
w`+1(Hvn )

·
w`+1(y)

w`+1(Hvn )
· a ,

because the function w`+1(·)/w`+1(Hvn ) describes the probability that a node is the
source or the destination of a search/migration message.

The total capacity of tree edges that are incident to vn is w`+1(Hvn )+w`(Hvn ) ≤
2 · w`+1(Hvn ). Therefore, a ≤ 2 Ct · w`+1(Hvn ), since a larger number of mes-
sages directed to vn in the tree could not be handled with congestion Ct. This
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gives that the expected number of messages between x and y is at most 2 Ct ·

w`+1(x) ·w`+1(y) /w`+1(Hvn ), which is 2Ct times the demand between x and y in
the CMCF-problem for cluster Hvn . Therefore, if we route the search/migration
messages according to the solution of the CMCF-problem, the expected load of
an edge is only 2 cH Ct ≤ 16 cH Ct.

We have shown that for each node vt the search/migration messages for vt
only induce an expected load of at most 16 cH Ct on an edge of Hvt . On all other
edges the induced load is 0. Hence, the expected load L(e) of an edge e for all
types of messages is only

L(e) ≤ 18 cH Ct height(TH) = 9 δH · Ct ,

i.e., the remapping procedure only increases the bound of Theorem 2.2 by a
constant factor.

Now, we derive a bound for the load of an edge that holds with high prob-
ability. For this we have to analyze the dependencies between messages sent in
the adapted simulation. All messages are sent between host nodes that simulate
adjacent tree nodes of TH, and the node of G that simulates a given tree node is
changed from time to time. Therefore, a message is of the form: “connect the
j-th host node of vi and the k-th host node of vn”. Messages only depend on one
another if they share an endpoint, i.e., they use the same embedding of some tree
node. The remapping guarantees that for some fixed embedding a host node only
receives 2D messages, namely at most D access messages and at most D search
messages. Therefore, a fixed message m can only depend on at most 4D other
messages (2D messages for each endpoint). We divide the messages into 4D + 1
classes such that the messages in any given class are independent. Let Li(e) denote
the load created on edge e due to messages from class i, and let µi(e) := E[Li(e)]
denote the expected value.

Each Li(e) is a sum of independent random variables with weight at most
1/b(e), because we can assume that each message is routed along a simple path.
We can apply Corollary 2.4 with µ = µi(e) and W = 1/b(e). This gives

Li(e) ≤ 2µi(e) + α log n with probability at least 1 − n−Ω(α) .

As this holds for every i we get that L(e) =
∑

i Li(e) ≤ 2
∑

i µi(e) + (4D + 1) ·
α log n ≤ 8 cH height(TH) Copt+O(D · log n), with high probability. Since this holds
for any edge e we get the following result on the congestion.

Lemma 2.9 Given a graph G and an associated decomposition tree TH there exists
a dynamic data management algorithm that is O(δH)-competitive with respect to the
congestion.
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Concurrent requests. Now, we show how to generalize our results to scenar-
ios where requests do not appear one by one, but have to be served concurrently.
However, we do not allow arbitrary concurrent requests but we restrict the re-
quests to form a data-race free application, i.e., a write request to an object is
not allowed to overlap with other write requests to the same object, and there
is some order among the requests to the same object such that for each read or
write request there is a unique most recent write. This allows arbitrary concurrent
accesses to different object and concurrent read accesses to the same object.

The reason for the above definition is that it allows a simple notion of con-
sistency. A data management strategy is called consistent if it ensures that a read
request directed to an object always returns the value of the most recent write
access. Note that for application that are not data race free, this definition of
consistency is not valid, as there may be no “most recent” write.

Of course, there exist relaxed notions of consistency for application that are
not data race free. However, it might be very difficult to obtain online algorithms
with an acceptable competitive ratio in such a scenario.

To see this suppose that a large number of concurrent write requests are
issued in the network without an intermediate read request. An optimal strategy
that has global knowledge could serve all write requests by communicating along
the branches of one Steiner tree that connects all writing nodes and all copies.
An online algorithm cannot do this because in a distributed setting it does not
“know” that there is no read request, and that it thus can delay the execution of
write requests for quite a while. Somehow a write request of a distributed online
algorithm has to fulfill some postconditions in order to guarantee the consistency
of the algorithm regardless of future requests.

We have to describe how an online strategy handles concurrent requests
that are issued according to the restrictions of data race free programs, without
increasing the congestion by too much. For concurrent read requests we can
simply refer to the work of Maggs et al. (see [MMVW97]). Their tree strategy can
handle concurrent read requests, and hence, our strategies can do so, too, since
we only simulate the tree strategy in different networks.

However, it may also happen that migration messages or search messages
overlap with access messages or other search messages. For example consider
a search message that is sent from an old host node hold to a newer host node
specified by the respective pointer in the sequence. While this message is in
transit other search messages or access messages may arrive at the outdated host
hold. In this case these messages do not initiate a second search operation but wait
until the acknowledgment for the ongoing search operation returns.

This guarantees that not too many search messages are sent along the same
link in the network. In general all messages are acknowledged in order to ensure
that at most two messages for the same object are in transit between two (possibly
outdated) host nodes. This mechanism can be viewed as a serialization of requests
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at the visited host nodes. This means if during the execution of two requests, these
requests “meet” at some host node, the latter is blocked until the first has finished
its operation. This method is very general and can be applied to nearly any
distributed online algorithm to obtain a concurrent solution. (Note, however, that
for non-distributed online algorithms as, e.g., presented in [AAF+97] it is quite
difficult to obtain a corresponding concurrent solution.)

We do not have to change our analysis because the only additional commu-
nication are the acknowledgments. Obviously, these messages do not influence
our asymptotic bounds since each of them corresponds to a message that we take
into account.

2.3.6 Constructing the hierarchical decomposition

In this section we show how to construct for any graph G = (V,E) a hierarchical
decomposition H, such that the height of the corresponding decomposition tree
TH is O(log n) and in each cluster the CMCF-problem can be solved with conges-
tion at most cH = Ω(1/ log3 n). This gives a factor of δH = O(log4 n) between
the congestion in TH and the expected load of an edge in G for the simulation
(see Theorem 2.2). Furthermore, we show that the construction can be done in
polynomial time with respect to bmax and the number of nodes in the graph G.

Before we formally describe our construction algorithm we give some pre-
liminaries on cuts and CMCF-problems. Consider any set of nodes X ⊆ V and a
concurrent multicommodity flow problem on X. A cut in the subgraph induced
by X is a partition of X into two subsets A and B = X \ A. The sparsity of a cut
(A,B) is defined as cap(A,B)/dem(A,B), where dem(A,B) is the demand of the
CMCF-problem that is separated by the cut, i.e., the sum over all demands of
commodities for which source and destination lie in different parts of the cut.

The inverse of the sparsity of a cut in X places a lower bound on the congestion
required for routing all commodities with their specified demands.6 Therefore,
it is an important problem to determine for a given routing problem a cut with
minimum sparsity, i.e., a sparsest cut, as this is somehow the worst bottleneck
in the network. There exist several approximation algorithms for this problem.
We define for a given algorithm A that ηA denotes the maximum possible ratio
between the sparsity of a cut computed by A and 1/Copt, where Copt denotes
the optimum congestion that can be obtained for the CMCF-problem. Note that
since the sparsity of the sparsest cut is an upper bound on 1/Copt, this means, in
particular, that the cut algorithm has an approximation ratio of ηA. For general
graphs there exist approximation algorithms with ηA = O(log n) and for planar
graphs there are algorithms with ηA = O(1) (see [AR98] and [KPR93]).

6Note that this only holds since we assume that the flow in the solution to the CMCF-problem may
not leave X.
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Recapitulating, we can compute a cut (A,B) with

1/Copt ≤
cap(A,B)
dem(A,B)

≤ ηA · 1/Copt

in polynomial time.
For the remainder of the section we define a parameter λ as λ := 64 ηA log n

and we choose cH := 24 ηA λ. We say that a cluster H fulfills the CMCF-property
if the solution to the CMCF-problem in H has congestion at most cH. The goal
is to find a hierarchical decomposition such that every cluster fulfills the CMCF-
property and height(TH) is logarithmic. Note that according to the above values
cH is O(log n) for planar networks and O(log3 n) for general networks if the best
known approximation algorithms are used for fixing ηA. Hence, if we manage to
obtain a decomposition in which every cluster fulfills the CMCF-property we get
a decomposition H with δH = O(log4 n).

The idea of our construction algorithm is to use a recursive approach. We
design an algorithm for partitioning a single cluster and apply the algorithm in
a recursive manner to G, i.e., we first use the algorithm to partition V and then
call it recursively for the returned subclusters of V. Such an approach is possible
because the CMCF-problem for a cluster H only depends on how H is partitioned
into subclusters, but not on the further decomposition of these subclusters. This
holds because the partition of H into subcluster already completely defines the
function w`+1(·) for subsets of H and, hence, it defines the CMCF-problem for
H, as well.

Therefore if we design an algorithm that on input of a cluster H partitions
H such that the CMCF-problem on H can be solved with congestion at most cH,
and each subcluster contains only a constant fraction of H’s nodes, we are done.
Unfortunately, this is not possible because there exist input clusters that cannot
be partitioned such that the CMCF-problem can be solved with low congestion.
Figure 2.2 shows an example of such a cluster.

In order to overcome these difficulties we introduce an additional precondi-
tion that an input cluster given to the algorithm has to fulfill. Then we present an
algorithm that partitions a cluster H fulfilling the precondition into subclusters Hi
such that the CMCF-property holds for H, and every Hi fulfills the precondition.
This algorithm can then be applied recursively. The precondition is as follows.

Definition 2.10 (Precondition) A level ` cluster H fulfills the precondition if for all
sets U, such that |U| ≤ 3

4 |H| the following condition holds:

λ · cap(U,H \U) ≥ w`(U) .

Observe that the bad cluster given in Figure 2.2 does not fulfill this precondition.
In the proof of the following lemma it is shown that the precondition “eliminates”
all input clusters that cannot be partitioned properly.
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A B

Figure 2.2: An input cluster H = A ∪ B that cannot be partitioned properly. Re-
gardless of how the partitioning is done, the CMCF-problem for the cluster will
send at least a flow of cap(A,V \H)/2 or cap(B,V \H)/2 over the indicated cut. In
either case, the cut has not enough capacity to support this flow.

Lemma 2.11 (Main Lemma) Let H be a level ` cluster that contains at least two vertices
and fulfills the precondition. It is possible to partition H into disjoint subclusters Hi with
the following characteristics:

1. H fulfills the CMCF-property.

2. For each subcluster Hi we have |Hi| ≤
2
3 · |H|.

3. Each subcluster Hi fulfills the precondition.

Moreover this partitioning can be computed in polynomial time with respect to |H| and
bmax, where bmax denotes the maximum capacity of a network link.

Now7, we argue that the described algorithm yields the construction of the hierar-
chical decomposition H. This can be seen as follows. First we apply the algorithm
to the set V which is the only cluster on level 0 of the decomposition tree. V
fulfills the precondition, because w0(V) = 0. The algorithm returns a partitioning
of V that defines the function w1(·) and yields the level 1 clusters which fulfill the
precondition. We apply the algorithm recursively to all these clusters until we get
singleton sets {v}, v ∈ V. By Property 1 our algorithm ensures that for each cluster
the corresponding CMCF-problem can be solved with low congestion. Further,
the height of the decomposition tree TH is logarithmic because of Property 2 of the
lemma. The total number of clusters in the hierarchy H is at most O(n). Therefore
the total construction time is also polynomial with respect to bmax and n.

Before proving Lemma 2.11 we introduce an important subroutine used in
the partitioning algorithm. During the algorithm it may happen that some of
the current clusters do not fulfill the precondition. Then a subroutine called

7The proof of the main lemma can be found on page 43.
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AP (R )
PR := {R}
do

for each Ri ∈ PR do
compute (A,B) - an approximate sparsest cut for G(Ri)
ψ := sparsity of the cut (A,B)
if ψ ≤ 4σ

λ then
PR := PR \ {Ri}

PR := PR ∪ {A,B}
until we made no changes to PR in this iteration
return PR

Figure 2.3: The algorithm AP

AP() splits such a cluster into smaller parts such that each part
fulfills the precondition.8 For maintaining some global property of the partitioning
algorithm the capacity of edges connecting the created parts must not be too large.
This is formalized in the following lemma.

Lemma 2.12 It is possible to partition any set R ⊆ V into disjoint sets Ri, such that each
Ri fulfills the precondition and

∑
i out(Ri) ≤ 2out(R). Moreover, this partitioning can be

computed in polynomial time with respect to |R|.

Proof. The algorithm AP() is described in Figure 2.3. It works
as follows. We start with a partition that contains only R. In each iteration
we consider each set Ri of the current partitioning PR. We define a concurrent
multicommodity flow problem G with demands dem(u, v) = w`(u)/|Ri| for each
ordered pair u, v ∈ Ri. Then we compute (A,B) – an approximate sparsest cut of Ri.
Let φ denote the sparsity of this cut, i.e., φ = cap(A,B)/

(
|B|
|Ri |
·w`(A) + |A|

|Ri |
·w`(B)

)
.

If φ ≤ 4ηA/λ, then Ri is replaced by A and B in the current partitioning PR.
We proceed until the sparsity of the computed approximate cut for each Ri is
greater than 4ηA/λ. For simpler notation we denote the term 4ηA/λ with Λ in the
following.

The algorithm runs in polynomial time because the number of iterations is
bounded by |R| and each iteration runs in polynomial time.

8Note that this is always possible because clusters that contain only a single node fulfill the precon-
dition.
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First we prove that after this algorithm has finished, each set Ri from the
partitioning of R fulfills the precondition. Assume for contradiction that there
exists a set Ri and U ⊆ Ri such that |U| ≤ 3

4 |Ri| and λ · cap(U,Ri \U) < w`(U). Let
φmin denote the sparsity of a sparsest cut for G(Ri). We derive a bound on φmin
and thus also on the sparsity of the approximate sparsest cut φ computed by the
algorithm. It holds that

λ · cap(U,Ri \U) < w`(U)

≤ 4
|Ri \U|
|Ri|

· w`(U)

≤ 4
(
|Ri \U|
|Ri|

w`(U) +
|U|
|Ri|

w`(Ri \U)
)
,

where we utilized that |U| ≤ 3
4 |Ri| for the second step. This gives that the sparsity

of the cut (U,R \ U) and, hence, also the value of the sparsest cut is at most 4/λ.
Since φ is the value of an approximate sparsest cut we get

φ ≤ ηA · φmin ≤ ηA
4
λ
= Λ ,

which is a contradiction, because in this case the algorithm would have divided
Ri. Consequently, each set Ri ∈ PR fulfills the precondition.

To prove that
∑

i out(Ri) ≤ 2out(R) we consider a directed weighted graph H
with node set VH whose vertices correspond to edges of G leaving a partition Ri
in the final partitioning PR. For simpler notation, let RH ⊆ VH denote the set of
nodes of H that represent edges which have exactly one endpoint in R, i.e., edges
that contribute to out(R).

The edges of H will model the fact that newly introduced capacity is amortized
against already existing capacity. In the following, we define the edges of H more
precisely. Consider a step of the algorithm in which a set Ri is divided into sets
A and B. Such a step increases the capacity of edges that leave partitions of PR
by the capacity of edges between A and B, i.e., 2cap(A,B). (Each edge is counted
twice since it leaves two partitions of PR.) For each such edge we introduce a new
vertex in H. We want to derive a bound on the total capacity that is added to H.
Therefore we amortize the newly created capacity 2cap(A,B) against the capacity
out(Ri).

Let EA = A×Ri and EB = B×Ri denote the set of edges that have one endpoint
outside Ri and the other in A and B, respectively. (EA ∪ EB contains all edges that
leave the set Ri.) In order do describe our amortization scheme we introduce the
following notion. We say that the edges from EA ∪ EB pay for the new edges from
A×B. We define for each pair of edges e ∈ A×B and e′ ∈ EA ∪EB a price pay(e′, e)
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that describes the amount that is paid by edge e′ for edge e. We require that for
each edge e ∈ A × B it holds that∑

e′∈EA∪EB

pay(e′, e) ≥ 2b(e) ,

i.e., we pay enough for edge e.
We model this payment in the graph H via a directed edge from ve′ to ve that

is weighted with pay(e′, e). Then the above requirement simply states that for
each node ve ∈ VH \ RH (a node that is added to H during the running time of
AP), the weight of incoming edges must be at least as large as
two times the weight of ve, i.e., b(e).

The exact definition of the function pay(·, ·) is as follows. For an edge ea ∈ EA
we define

pay(ea, e) := 2Λ ·
b(e)

cap(A,B)
·
|B|
|Ri|
· b(ea),

and for an edge eb ∈ EB we define

pay(eb, e) := 2Λ ·
b(e)

cap(A,B)
·
|A|
|Ri|
· b(eb) .

In order to simplify our notation we extend the function pay(·, ·) to vertices of H,
i.e., for two vertices ve, ve′ ∈ VH that correspond to edge e, e′ ∈ V × V we define
pay(ve′ , ve) = pay(e′, e) which describes the weight of edge (ve′ , ve) ∈ EH.

The following claim shows that by the above definition we pay enough for
new edges.

Claim 2.13 ∀ve ∈ VH \ RH :
∑

v∈VH
pay(v, ve) ≥ 2b(e).

Proof. Let e denote an edge that is created when partitioning a set Ri into A and
B. We can estimate the payment for incoming edges of ve by∑
v∈VH

pay(v, ve) =
∑

e′∈EA∪EB

pay(ve′ , ve)

=
∑

ea∈EA

pay(vea , ve) +
∑

eb∈EB

pay(veb , ve)

=
∑

ea∈EA

2Λ ·
|B|
|Ri|
·

b(e)
cap(A,B)

· b(ea) +
∑

eb∈EB

2Λ ·
|A|
|Ri|
·

b(e)
cap(A,B)

· b(eb)

= 2Λ ·
b(e)

cap(A,B)
·

(
|B|
|Ri|
·w`(A) +

|A|
|Ri|
·w`(B)

)
≥ 2b(e) ,
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where the last step follows from the fact that (A,B) is a cut with sparsity at most
Λ, which implies that Λ ·

(
|B|
|Ri |
·w`(A) + |A|

|Ri |
·w`(B)

)
≥ cap(A,B).

The following claim relates the total weight of edges leaving node ve ∈ VH to
b(e).

Claim 2.14 The total payment of an edge e during the whole algorithm is at most b(e)/2,
i.e., ∑

v∈VH

pay(ve, v) ≤ b(e)/2 .

Proof. Let e = (v,u). We consider sequences of different sets in which v and u lie
during the run of the algorithm. We denote these sequences of sets as V0, V1, . . . ,
Vl and U0, U1, . . . , Uk for v and u, respectively. For those sequences, let ni = |Vi|

and m j = |U j|.
Each edge (ve, v) of H corresponds to cutting some Vi into Vi+1 and Vi \ Vi+1

or U j into U j+1 and U j \ U j+1. First we consider the case in which Vi is cut into
A := Vi+1 and B := Vi \Vi+1. We can estimate the total weight of edges between ve
and nodes of H that represent edges from A × B as follows:∑

e′∈A×B

pay(ve, ve′ ) =
∑

e′∈A×B

2Λ ·
|B|
|Vi|
·

b(e′)
cap(A,B)

· b(e)

= 2Λ · b(e) ·
|B|
|Vi|
·

∑
e′∈A×B b(e′)
cap(A,B)

= 2Λ · b(e) ·
|B|
|Vi|

= 2Λ · b(e) ·
ni − ni+1

ni
.

An analogous bound can be proved for the case when we divide U j into U j+1 and

U j \U j+1, namely
∑

e′∈A×B
pay(ve, ve′ ) = 2Λ · b(e) ·

m j−m j+1
m j

.

Proposition 2.15 For any sequence of natural numbers n = n0 > . . . > nk ≥ 1 it holds
that n0−n1

n0
+

n1−n2
n1
+ · · · +

nk−1−nk
nk−1

≤ 2 log n .

With this proposition we can estimate the total weight outgoing from ve as∑
v∈VH

pay(ve, v) = 2Λ · b(e) ·
[(n0−n1

n0
+ · · · +

nk−1−nk
nk−1

)
+

(m0−m1
m0

+ · · · +
ml−1−ml

ml−1

)]
≤ 2Λ · b(e) ·

(
2 log n + 2 log n

)
≤ 8 ·

4ηA

λ
· log n · b(e)

≤ b(e)/2 .
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This completes the proof of Claim 2.14.

Now, we can use the above claims to show that
∑

i out(Ri) ≤ 2out(R). This is
done by summing the weight of all incident edges for each node ve ∈ H, where
incoming edges are counted positively and outgoing edges are counted negatively.
Recall that RH ⊆ H denotes the set of nodes of H that represent edges leaving set
R in the graph G. We get

0 =
∑

ve∈VH

 ∑
v∈VH

pay(v, ve) −
∑

v∈VH

pay(ve, v)


=

∑
ve∈VH\RH

 ∑
v∈VH

pay(v, ve) −
∑

v∈VH

pay(ve, v)

 − ∑
ve∈RH

∑
v∈VH

pay(ve, v)

≥

∑
ve∈VH\RH

(
2b(e) −

1
2

b(e)
)
−

∑
ve∈RH

1
2

b(e) .

This gives out(R) ≥ 3
∑

ve∈VH\RH
b(e). Altogether we get

2 out(R) ≥ out(R) + 3
∑

ve∈VH\RH

b(e)

≥ out(R) + 2
∑

ve∈VH\RH

b(e)

=
∑

i

out(Ri) ,

as desired.

Now, we prove the main lemma.

Lemma 2.11 (Main Lemma) Let H be a level ` cluster that contains at least two vertices
and fulfills the precondition. It is possible to partition H into disjoint subclusters Hi with
the following characteristics:

1. H fulfills the CMCF-property.

2. For each subcluster Hi we have |Hi| ≤
2
3 · |H|.

3. Each subcluster Hi fulfills the precondition.

Moreover this partitioning can be computed in polynomial time with respect to |H| and
bmax, where bmax denotes the maximum capacity of a network link.
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P (S )
PH := {{v} | v ∈ H}
while H does not fulfill the throughput property
do

compute (A,B) - an approx. sparsest cut of H with |A| ≤ |B|
U∗ := round(A)
for each Hi ⊆ U∗ do

PH := PH \Hi
PH := PH ∪AP(U∗)

end
end
return PH

Figure 2.4: The algorithm P

Proof. The algorithm P is shown in Figure 2.4 and works as follows. It
always maintains a partitioning PH that fulfills requirements 2 and 3, i.e., each
subcluster Hi contains at most 2

3 |H| nodes and fulfills the precondition. The
initial partitioning consists of subclusters containing only one node. Clearly this
partitioning fulfills both requirements.

Now, in a kind of local search approach the algorithm successively changes
the partitioning until requirement 1 is fulfilled. If this happens the algorithm has
found the desired partitioning and can terminate. We show that if the algorithm
has not yet found a suitable partitioning it can change the current partitioning
such that a global work function decreases by a certain value. Since this work
function is bounded from below, we can deduce that the algorithm terminates in
a polynomial number of iterations and outputs a good partitioning.

The details are as follows. In each iteration the algorithm checks whether
the CMCF-problem that corresponds to the current partitioning can be solved
with congestion cH. If this is the case, the algorithm terminates, since all the
requirements are fulfilled and a good partitioning is found.

Otherwise the algorithm tries to find a collection of subclusters Hi of the
current partitioning that has a certain property, namely that out(

⊎
i∈I Hi) �

w`+1(
⊎

i∈I Hi), where I is the index set of the collection of these subclusters.
Then the algorithm merges theses subclusters together to form a new single

subcluster, i.e., it removes all the subclusters that belong to the collection and
adds a new single subcluster U∗ :=

⊎
i∈I Hi that simply contains all nodes from
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the collection. Then in a final step the algorithm partitions U∗ with AP-
 in order to ensure that every subcluster of the partitioning fulfills the
precondition.

A replacement of all Hi by clusters that result from AP(U∗)
is called a local improvement of the algorithm. A key result for the construction is
that we show that in each local improvement step the total capacity of edges that
connect different subclusters decreases at least by a constant. Since this capacity
is clearly bounded from below by 0, the algorithm will terminate after at most
|H|2 · bmax iterations, i.e., in polynomial time. Furthermore, since we show that
the algorithm always makes an improvement step if H does not fulfill the CMCF-
property, we can conclude that after termination the CMCF-problem on H can be
solved with congestion at most cH.

Now we describe how the algorithm finds a collection of subclusters such
that out(

⊎
i∈I Hi)� w`+1(

⊎
i∈I Hi) if H does not fulfill the CMCF-property. First we

compute an approximate sparsest cut (A,B) corresponding to the CMCF-problem
in H. Without loss of generality we can assume that |A| ≤ |B|. For this cut we have

cap(A,B)
dem(A,B)

≤ ηA · 1/Copt ≤ ηA · 1/cH = 1/(24λ) ,

because the optimal congestion Copt for solving the CMCF-problem is larger than
cH. The demand dem(A,B) can be estimated as

dem(A,B) =
∑

u∈A,v∈B

dem(u, v) +
∑

u∈B,v∈A

dem(u, v)

=
∑

u∈A,v∈B

w`+1(u) · w`+1(v)
w`+1(H)

+
∑

u∈B,v∈A

w`+1(u) · w`+1(v)
w`+1(H)

= 2 ·
w`+1(A) · w`+1(B)

w`+1(H)

≤ 2 ·w`+1(A) .

Combining the sparsity of cut (A,B) with the above inequality we get

cap(A,B)
w`+1(A)

≤ 2 ·
cap(A,B)
dem(A,B)

≤
1

12λ
. (2.5)

We cannot directly use the set A to improve the current partitioning of H,
because it does not have to consist of whole subclusters Hi. Therefore we define
a set U∗, that is a rounding of the set A using the current partitioning, i.e., U∗ is a
union of disjoint subclusters Hi. More precisely, let Ai := A ∩Hi and Bi := B ∩Hi.
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We partition all indices of subclusters into sets IL and IS. If |Ai| ≥
3
4 · |Hi| then we

say that Hi has large intersection with A and we define i ∈ IL. Otherwise the index
i belongs to IS. U∗ is a union of all subclusters Hi that have large intersection
with A, i.e., U∗ :=

⊎
i∈IL

Hi. This definition and the fact that |A| ≤ 1
2 |H| ensure that

|U∗| ≤ 2
3 |H|. The following technical claim is proved in the appendix on page 97.

Claim 2.16
out(U∗)

w`+1(U∗)
≤ 4λ ·

cap(A,B)
w`+1(A)

.

Using this claim and Equation (2.5) we get w`+1(U∗) ≥ 3 out(U∗). We are now
able to prove that the algorithm P terminates.

Lemma 2.17 The algorithm P terminates and its running time is polynomially
bounded with respect to bmax and |H|.

Proof. Let W(H) := w`+1(H) − out(H) denote the total capacity of edges that
connect different subclusters in H. For proving the lemma it suffices to show that
in each iteration of the P algorithm, W(H) decreases by at least 1.

In each round we remove all the subclusters contained in U∗. Therefore, W(H)
decreases by w`+1(U∗), i.e., by at least 3 out(U∗). After that we add clusters Ri
returned by AP(U∗) and W(H) increases by

∑
i w`+1(Ri). Using

Lemma 2.12 we obtain∑
i

w`+1(Ri) =
∑

i

out(Ri) ≤ 2 out(U∗) .

Thus in each iteration W(H) decreases by at least out(U∗). Since the capacity
function b(·) is normalized, out(U∗) ≥ 1.

At the beginning of P, W(H) is the sum of bandwidths of all edges
that have both endpoints in the cluster H. Hence, initially W(H) ≤ |H|2 · bmax.
Since W(H) decreases in each iteration by at least 1 and is bounded from below
by 0, P must terminate after at most |H|2 · bmax iterations. This yields the
lemma.

This finishes the proof of the main lemma.

Theorem 2.18 There is a polynomial time algorithm that constructs a hierarchical de-
composition H that guarantees a factor of δH = O(log2 n · η2

A) between the congestion in
TH and the expected load of an edge in G.

Proof. Lemma 2.11 shows that a hierarchical decomposition with height(TH) =
O(log n) and cH = O(η2

A · log n) can be constructed in polynomial time. Since
δH = O(cH · height(TH)) the theorem follows.
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Remark 2.19 If in the algorithm AP the subroutine for approximat-
ing a sparsest cut is replaced by an exact algorithm, the hierarchical decomposition has a
factor of δH = O(log2 n · ηA).

Proof. If a cut in the AP algorithm is computed optimally
the precondition holds with λ = O(log n) for every cluster. Therefore, we could
compute a partitioning for which the congestion of the CMCF-problem for a cluster
is at most cH = 24 · ηA · λ = O(ηA · log n). Since the height of the decomposition
tree is logarithmic, we obtain a factor δH = O(log2 n · ηA).

Note that this version of the construction algorithm is not polynomial since
computing a sparsest cut is NP-hard. But this modification of our construction
algorithm proves, e.g., the existence of an oblivious routing scheme with competi-
tive ratio O(log3 n), for general networks. In Section 2.4 we show how to compute
the optimal oblivious routing scheme for any network. However, the latter re-
sult does not show any bound on the competitive ratio for this optimal scheme.
Therefore, an existence proof of an O(log3 n) competitive algorithm is important
because such an algorithm can be constructed in polynomial time with completely
different techniques that do not give a bound on the competitive ratio.9

A simple partitioning algorithm for meshes

For specific network topologies it is not necessary to apply the complex and time
consuming partitioning algorithm presented in the previous section. For meshes,
e.g., there is the following much simpler approach. Consider an N-ary d-cube,
i.e., a d-dimensional mesh with sidelength N in each dimension, where N is a
power of two, i.e., N := 2k, and that has uniform edge capacities. The partitioning
divides such a cube into 2d subcubes of sidelength N/2 = 2k−1 by bisecting the
cube in each dimension. Since this partition gives N/2-ary subcubes it can be
applied recursively for log N steps. Therefore, the height of the corresponding
decomposition tree is log N = log( d√n) = 1/d · log n. We show that this simple
scheme achieves a good bound on the congestion needed for solving the CMCF-
problem in a cluster of the resulting hierarchical partitioning H.

Lemma 2.20 For a d-dimensional cube M(d,N) with sidelength N = 2k and n = Nd

nodes, there is a hierarchical partitioning such that height(TH) = 1/d · log n and cH =
O(d). This gives a factor of δH = O(log n) between the congestion in TH and the expected
load on edges of M(d,N) for the simulation.

9Note, however, that this result has been improved by Harrelson et al. [HHR03]. They show how to
construct a hierarchical decomposition with factor δH = O(ηA log n log log n) in polynomial time.



www.manaraa.com

2.3.6 Constructing the hierarchical decomposition 47

Proof. We only have to show that cH = O(d) since the bound on height(TH)
directly follows from the partitioning scheme described above. We use known
results from routing on meshes.

Theorem 2.21 On a cube of sidelength N, an all-to-all routing problem can be solved
with congestion O(Nd+1).

Proof. Baumslag and Annexstein [BA91] have shown how to route any permuta-
tion on M(d,N) in O(d ·N) steps with congestion O(N). Since an all-to-all routing
problem can be decomposed into Nd

− 1 permutation routing problems, the theo-
rem follows.

For showing that every CMCF-problem can be solved with congestion O(d)
we translate the CMCF-problem into an all-to-all routing problem so that we can
apply the above theorem.

The CMCF-problem for a cluster H ∈ H defines that every node that has m
edges leaving a subcluster of the partitioning of H has to distribute m units of
flow among the border nodes, i.e., among nodes that have incident edges leaving
a subcluster. (Note that we only need to consider the number of edges, since
the edge capacities are uniform for mesh networks.) An analogous notion of this
CMCF-problem is to view it as if the flow originates at the border edges (edges
leaving a subcluster), and that each border edge has to distribute one unit of flow
among all other border edges.

We first distribute this flow, among all nodes of the network. For this, each
edge distributes its flow evenly among all nodes in the corresponding linear array.
This can be done with constant congestion because a single divide step cuts each
linear array at most once. Therefore a linear array contains at most four border
edges.

A node receives at most flow of value 4d/N, as it belongs to d linear arrays,
and each array contributes at most flow 4/N. Note that each node gets exactly the
same amount of flow, since all arrays along the same dimension have the same
number of border edges, because of the symmetry of the partitioning.

Now, each node distributes its flow among all other nodes. This can be
done using an all-to-all routing in which each node sends a fraction of 1/Nd of its
flow to every other node. According to Theorem 2.21 we need only congestion
O(Nd+1) · 4d/N · 1/Nd = O(4d) for this step.

In the last step each array distributes its flow evenly among its border edges.
Thereby, each edge receives the right amount of flow. Obviously, this step can be
performed with constant congestion.

Altogether we have shown that we can route the CMCF-problem with con-
gestion O(d). This yields the lemma.

Note that the above theorem gives an O(log n)-competitive algorithm for virtual
circuit routing and data management on meshes of arbitrary dimension. This im-
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proves the result of [MMVW97], where a competitive ratio of O(d · log n) was
shown.

2.4 Optimal oblivious routing

In the previous sections we have presented a basic framework for minimizing con-
gestion in distributed systems, and we have shown that this framework gives, e.g.,
an oblivious virtual circuit routing algorithm with polylogarithmic competitive
ratio for general, undirected graphs. Since this framework provides a uniform
bound on all graphs it may not generate the best routing scheme for a network
but only one that obtains the polylogarithmic bound. A better oblivious routing
scheme may potentially exist, i.e., one that guarantees a smaller competitive ratio
w.r.t. congestion.

In this section we show how to compute the best possible oblivious routing
scheme for any given network in polynomial time. The techniques used to derive
this result are based on linear programming and differ completely from techniques
used in the previous section. In particular, the result in this section does not
provide general bounds on the competitive ratio of oblivious routing. It is only
shown that it is possible to compute the optimum bound for a given network
in polynomial time.

2.4.1 Preliminaries

We use the same notation for the network as in Section 2.3. This means the network
is modeled as a complete graph G = (V,E) with n = |V| nodes, and the function
b : E → R+0 describes link capacities. Note, however, that in this section we deal
with directed graphs, this means the bandwidth function b is not symmetric as
it was in the previous section.

Our results can be transferred to undirected networks, as well, because there is
the following, well known reduction from undirected to directed graphs. Replace
each undirected edge e = (u, v), of capacity b(e), with the directed gadget u, x, y, v
which consists of five directed edges: four directed edges e1 = (u, x), e2 = (v, x), e3 =
(y,u), e4 = (y, v), with capacity ∞, and one directed edge e5 = (x, y) with capacity
b(e). The gadget is illustrated in Figure 2.5. The transformation preserves the
property that a multicommodity flow is feasible on the undirected graph if and
only if it is feasible on the directed graph. Therefore, all results that we develop
for directed graphs in this section hold for undirected graphs, as well.

An oblivious routing scheme specifies for every source target pair s, t a unit
flow from s to t that defines how the demand between s and t is routed. Formally
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Figure 2.5: The reduction from undirected to directed graphs

a routing scheme or a routing f is defined by the following linear constraints

∀e ∈ E ∀s, t ∈ V fst(e) ≥ 0

∀v ∈ V ∀s, t ∈ V \ {v}
∑

e∈(v)
fst(e) −

∑
e∈(v)

fst(e) = 0

∀s, t ∈ V
∑

e∈(s)
fst(e) −

∑
e∈(s)

fst(e) = 1

(2.6)

where (v) and (v) denote the set of edges leaving and entering v, respectively.
Note that each set of variables fst(e), e ∈ E defines a unit, single-commodity flow
from s to t.

A demand matrix D is an n × n nonnegative matrix, in which the element Dst
defines the amount of flow that has to be sent from s to t. We can route this
demand using a routing scheme f by simply scaling each unit flow fst of the
routing scheme by a factor of Dst. The load created on edge e when routing the
demand matrix D with routing scheme f is

(e, f ,D) =
1

b(e)
·

∑
s,t

Dst · fst(e) ,

i.e., the total flow traversing e divided by the bandwidth of e. The congestion
C( f ,D) for routing D using f is is the maximum load of a network link, i.e.,
C( f ,D) = maxe∈E (e, f ,D).

For a demand matrix D we denote the optimal congestion that can be achieved
when routing these demands, with Copt(D). The competitive ratio of a routing
scheme f is the maximum possible ratio between the congestion produced by the
routing scheme and the congestion produced by an optimal scheme. Formally,

-( f ) = sup
D

C( f ,D)
Copt(D)

.
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We are interested in obtaining an optimal oblivious routing scheme for a network G,
i.e., a scheme f that obtains the best possible competitive ratio, that is

f = arg min
g
-(g) .

2.4.2 LP formulation

The main theorem of this section is as follows.

Theorem 2.22 There is a polynomial time algorithm that for any input network G (di-
rected or undirected) outputs a routing f such that the competitive ratio of f is best
possible, i.e., f = arg ming -(g).

The running time of our algorithm will be polynomial in the number of nodes
n, and in (b(·)), the size of the bit representation of the edge capacities. If the
input network is undirected we apply the transformation illustrated in Figure 2.5.

We first observe that the problem of computing an optimal oblivious routing
can be formulated as the following LP that has |E| · |V|2+1 variables, but an infinite
(continuous) number of constraints.

minimize z

subject to f is a routing

∀e ∈ E∀D (e, f ,D) ≤ z · Copt(D)

(2.7)

The variables in this LP are the routing variables fst(e) and the minimization
parameter z. The constraints of this LP are the routing constraints (Equation (2.6))
which specify that the variables fst(e) constitute a routing scheme, and for every
demand matrix D, and every edge e ∈ E, a constraint that ensures that routing f
produces at most load z · Copt(D) on e. The latter type of constraint will be called
congestion constraint in the following. Note that the demand matrices D and the
respective optimal congestion values Copt(D) are constants in this LP.

Our solution essentially solves LP 2.7 using the Ellipsoid method with a
separation oracle (see [GLS88]). The problem with this approach is that our LP
contains constraints that have coefficients with non-polynomial bit representation.
This affects the running time of the Ellipsoid method in two ways. First, the bound
on the number of iterations depends on the size of the initial ellipsoid and the
smallest “volume” of a feasible set. If the bit representation of constraints is not
polynomial, the minimum volume of a feasible set may be too small. Second,
the time needed for a single iteration is non-polynomial if the separation oracle
returns a “violated constraint” (demand matrix) with non-polynomial size.

Therefore, we first show that the constraints in our LP can be pruned such
that only constraints with short bit representation remain. All other constraints
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are redundant. For this, observe that if we scale a demand matrix D, the ratio

(e, f ,D)
Copt(D)

remains fixed. Hence, it suffices to use only the congestion constraints of LP 2.7
where the demand matrix can be routed with minimum congestion equal to 1, as
all other demand matrices are scaled versions of such a matrix. We denote the set
of demand matrices D that can be routed with congestion at most 1 by

H1 = {D | Copt(D) ≤ 1} .

We now consider the LP, where the congestion constraints only contain constraints
for demand matrices from H1.

minimize z

subject to f is a routing

∀e ∈ E∀D ∈ H1 (e, f ,D) ≤ z

(2.8)

This LP is equivalent to LP 2.7.10

We now show that H1 constitutes a polyhedron on |V|2-dimensional space,
defined by a polynomial (in |V|) number of inequalities, with coefficients in the
set {b(e) | e ∈ E} ∪ {+1,−1}. Then, we argue that we can further trim the congestion
constraints to demand matrices that are vertices of H1. This gives the desired
result that the LP only contains constraints with small bit representation.

The polyhedron H1.

The polyhedron H1 is the projection of the following on the variables D.

1. The conservation constraints that guarantee that there is a flow g shipping
Dst from s to t, for every pair s, t.

∀s, t ∈ V Dst ≥ 0

∀e ∈ E ∀s, t ∈ V gst(e) ≥ 0

∀v ∈ V ∀s, t ∈ V \ {v}
∑

e∈(v)
gst(e) −

∑
e∈(v)

gst(e) = 0

∀s, t ∈ V
∑

e∈(s)
gst(e) −

∑
e∈(s)

gst(e) = Dst

10It would be sufficient to define H=1 = {D | Copt(D) = 1}, and to include only congestion constraints
for demand matrices from H=1 in the LP. The definition of H1 as {D | Copt(D) ≤ 1} will simplify
the following proof. Note that for demand matrices D with Copt(D) < 1 the congestion constraint
in LP 2.8 has been relaxed, compared to the corresponding constrained in LP 2.7. However, this
relaxation does not affect the set of feasible solutions of the system.
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2. Constraints ensuring that the flow g has congestion at most 1.

∀e ∈ E
∑
s,t

gst(e) ≤ b(e)

It is not hard to see that the feasible solutions of this system are all demand matrices
D such that the demands can be routed by some flow with congestion at most 1,
i.e., Copt(D) ≤ 1. Hence, the above inequalities indeed characterize the set H1.

The following lemma states that our LP only needs to contain congestion
constraints for demand matrices that are vertices of H1.

Lemma 2.23 Let V(H1) denote the set of vertices of H1. All congestion constraints in
LP 2.8 for demand matrices D < V(H1) are redundant.

Proof. Suppose that there is a candidate routing f that is infeasible because of the
congestion constraint for edge e ∈ E and demand matrix D′ ∈ H1, i.e.,

(e, f ,D′) > z .

We show that there is a demand matrix D′′ ∈ V(H1) from the vertex set of H1 with
(e, f ,D′′) > z, i.e., the constraint for matrix D′ is not required to certify the
infeasibility of routing f . Consider the following linear program.

maximize (e, f ,D)

subject to D ∈ H1

The routing f is a constant in this LP. It is well known that at least one of the
maxima of a linear objective function over a polyhedron is obtained at a vertex of
the polyhedron. We choose D′′ as a vertex maximum of the above linear program.
Then we have

(e, f ,D′′) ≥ (e, f ,D′) > z ,

as desired. This shows that we can trim all non-vertex constraints from LP 2.8,
without changing the solution of the LP.

Finally, we are left with the solution to

minimize z

subject to f is a routing

∀e ∈ E∀D ∈ V(H1) (e, f ,D) ≤ z

(2.9)

which is an LP with a polynomial number of variables, and constraints that have a
bit representation polynomial in (n, (b(·)) ). We can solve this LP in polynomial
time using the following separation oracle.
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Separation Oracle.

• Input: A network G, a capacity function b(·), and an assignment to all
variables of LP 2.9, i.e., variables fst(e) and minimization variable z.

• Output: Either, a confirmation that all constraints of LP 2.9 are fulfilled, or
a “violated constraint”, this means

a) a violated routing constraint (Equation (2.6)), that shows that f does
not constitute a routing scheme,

or b) a violated congestion constraint, i.e., a demand matrix D ∈ V(H1)
and an edge e ∈ E such that

(e, f ,D) > z .

• Implementation: The oracle algorithm first checks all routing constraints.
These are only O(E · |V|2) inequalities and can therefore be checked in poly-
nomial time.

The congestion constraints are checked as follows. For every edge e ∈ E in
turn the algorithm solves the following LP

maximize (e, f ,D)

subject to D ∈ H1

and returns a vertex solution De ∈ V(H1). If for any edge (e, f ,De) > z,
the algorithm has found a violated constraint. Otherwise, for all edges and
demand matrices from D ∈ V(H1), we have

(e, f ,D) ≤ (e, f ,De) ≤ z ,

which means that all congestion constraints in LP 2.9 are fulfilled. The
running time of the oracle algorithm is polynomial, as the LP’s have a
polynomial number of variables, and a polynomial number of constraints
with polynomial bit representation.

We can use this separation oracle for solving LP 2.9 in polynomial time with the
Ellipsoid method. This gives the oblivious routing scheme that achieves the best
possible competitive ratio w.r.t. congestion for a given network G.

The methodology presented in this section is not limited to optimize for an
oblivious routing scheme that minimizes congestion but it can perform many
different optimizations. One example is minimizing node congestion (this cor-
responds to router load on IP networks) which is the ratio of the total traffic
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traversing a node to its capacity. It is also possible to consider edge and node
congestion simultaneously; to consider linear combinations of edges or nodes; to
add additive factor to the congestion formula; or to limit the dilation.

Another interesting possibility is to limit the class of demand matrices in
some way, as, e.g., to limit the sum of demands or require zero demand between
certain pairs. The limiting factor in the selection of the optimization function and
the restriction of demand matrices is the ability to express the problem and the
separation oracle using linear constraints.

Note however that for these cost metrics we do not have a general bound
on the competitive ratio of an oblivious routing scheme. Even for undirected
networks the competitive ratio may be very large. But the results in this section
make it possible to calculate the performance, i.e., the competitive ratio, of the best
oblivious routing scheme for a given input network. Then a network administrator
may decide whether this performance guarantee is acceptable for the intended
application, or adaptive routing algorithms have to be used instead.

2.5 Conclusions

We have developed solutions to data management and routing problems that
work completely distributed and create a low congestion on the network links
of a distributed system. In particular we have presented a basic technique that
transforms a congestion-efficient tree solution for a problem, into a solution on
general undirected networks. These results directly lead to the following ques-
tions concerning the possibilities to extend the technique to new scenarios and to
improve the results on the competitive ratios guaranteed by the framework.

• Can the bisimulation technique be extended to directed networks?

• How low can we make δH, the factor between the competitive ratio of a tree
strategy and the competitive ratio of the corresponding strategy for G?

• Is it possible to incorporate more complex cost-measures into the framework
such that not simply the congestion but some combination of congestion and
total communication load is minimized?

• Can we obtain strictly competitive algorithms with polylogarithmic com-
petitive ratios for general networks, i.e., networks where bmax is arbitrarily
large?

In the following we give some answers to these questions and discuss some
open problems related to our work. We begin with the extension of the framework
to directed graphs.
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Figure 2.6: A directed network in which any oblivious routing scheme achieves a
bad competitive ratio w.r.t. congestion.

Directed Networks. The question whether the framework can be extended to di-
rected networks can be answered negatively. The following result from [ACF+03]
shows that in directed networks the best possible oblivious routing scheme may
have a competitive ratio of Ω(

√
n), where n denotes the number of nodes of the

network. Since our framework implies an oblivious routing scheme with polylog-
arithmic competitive ratio, it cannot be extended to directed networks.

Lemma 2.24 There exist directed networks such that the competitive ratio for an oblivious
routing algorithm w.r.t. congestion is Ω(

√
n).

Proof. Consider the following directed network Gk = (V,E). The node set V can be
partitioned into three different sets V1, V2 and V3 such that there are only directed
edges from nodes in Vi to nodes in Vi+1 for i ∈ {1, 2}. In the following the nodes
in Vi are called nodes on level i. The set V3 = {t} contains only one node called
the target. The set V2 contains k nodes denoted with v1, . . . , vk. Finally, the set V1
contains k (k − 1)/2 denoted with v{i, j}, i, j ∈ {1, . . . , k}.

The edge set E is defined as follows. Every node vi from level 2 is connected
to the target via a directed edge (vi, t). Further, a node v{i, j} from the first level is
connected to nodes vi and v j on the second level. All edges have unit capacity.
Figure 2.6 illustrates the graph Gk for k = 4.

Now, fix an oblivious routing scheme for Gk. We show that this scheme has
competitive ratio at least (k − 1)/2 = Ω(

√
n). The routing scheme defines for each

node v{i, j} a unit flow to the target t that defines how routing requests between
v{i, j} and t are routed. Adding all these flows, we get that there is a total flow of
value k (k − 1)/2 that reaches t. Hence, there must be a node v` on the second level
that sends at least flow (k − 1)/2 along its outgoing edge. This flow originates at
nodes v{i,`}, i ∈ {1, . . . , k} \ {`}.

Consider the following routing problem. Each node v{i,`}, sends one unit of
flow to the target. The oblivious routing scheme creates at least load (k − 1)/2
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on edge (v`, t). However, the routing problem can be solved with congestion 1
by simply routing the flow originating at v{i,`} over vi to the target. Hence, the
oblivious routing scheme has competitive ratio at least (k − 1)/2. This proves the
lemma.

The above lemma shows that the worst case competitive ratio of oblivious
routing schemes differs substantially on directed and on undirected networks.
This is interesting because for online routing algorithms such a substantial dif-
ference does not exist, as there are algorithms that achieve a competitive ratio of
O(log n) for directed as well as for undirected networks (see [AAF+97]).

An explanation of this phenomenon may be that in undirected networks the
limitations of obliviousness are not so critical because an oblivious algorithm can
choose between many paths and can therefore achieve enough path diversification
by using randomization. In directed networks this does not hold because the
orientation of edges seriously restricts the number of different paths that can be
selected between a source/target pair. Therefore the oblivious algorithm cannot
achieve a good path diversification in directed networks and, hence, has a bad
competitive ratio. In contrast to this, an online algorithm can cope with directed
edges by using a traffic dependent path selection.

Strictly competitive routing. In Section 2.3.5 we presented a strictly competi-
tive virtual circuit routing algorithm with competitive ratio O(δH · bmax). This
ratio depends on bmax, i.e., the ratio between the highest capacity and the lowest
capacity of a link in the network. At first glance, this dependency seems unsat-
isfactory. However, the following lemma shows that, in general, the competitive
ratio of a strictly competitive algorithm depends on bmax.

Lemma 2.25 There exist undirected networks, in which any strictly competitive, oblivi-
ous virtual circuit routing algorithm has competitive ratio Ω(bmax).

Proof. Consider a network G as illustrated in Figure 2.7. There are two nodes
a and b connected with a single link e of high capacity (capacity bmax) and with
db2

maxe links of low capacity (capacity 1). We show that on this graph any strictly
competitive oblivious routing algorithm has at least competitive ratio Ω(bmax).
Note that our “bad example” has multi-edges, and that strictly speaking such a
graph does not fit into our model as we model the network as an ordinary graph
without multi-edges. However, the multi-edges are only used for simplifying the
description of the proof. The proof also works for the graph G′, obtained from G
by adding an intermediate node to each edge of G, i.e., replacing edge ei by edges
(a, xi), and (xi, b).

The proof works as follows. Fix an oblivious routing scheme. This scheme
defines a unit flow between a and b for routing the demands between these nodes.
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Figure 2.7: A bad network for strictly competitive routing algorithms.

We make a case distinction according to the fraction of this flow that is routed
along e.

• For the case that more than half of the flow traverses the high capacity link
e, a demand of db2

maxe messages between a and b creates expected load at
least bmax/2 on e. This gives an expected congestion of at least bmax for the
oblivious routing scheme. Since the demand can be routed with congestion
1 by using only low capacity links, the competitive ratio of the scheme is at
least bmax/2.

• If, however, the flow along e is less than 1/2, a demand of 1 message between
a and b is likely to create a bad congestion. With probability at least 1/2 the
messages is routed along a low capacity link, thereby inducing a load of 1.
Hence, the expected congestion of the oblivious routing scheme is at least
1/2. The optimum algorithm routes the message along the high capacity link
which gives a congestion of 1/bmax. Therefore, the competitive ratio of the
oblivious routing scheme is at least bmax/2.

Both cases yield the lemma.

The above negative result is somehow specific to our way of modeling the
network and the routing process. If, e.g., the oblivious algorithm could route
fractionally, the load on any edge would be equal to the expected load in our
randomized model. In this case Theorem 2.2 gives a factor of O(δH) between the
congestion of the oblivious algorithm, and the congestion of an optimal algorithm
and, hence, the oblivious algorithm is strictly O(δH)-competitive.

Harrelson et al. use the following network model. They assume that all links
in the network have unit capacity, and different bandwidth between nodes is
modeled by multi-edges (i.e., a link with bandwidth b in the physical network is
modeled via b links of unit bandwidth between the respective nodes in the graph).
In this network model the routing algorithm of Lemma 2.5 is strictly competitive.
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Different cost-measures. The question whether the bisimulation framework
can be extended to further cost-measures is well motivated by the packet routing
problem. The task in this problem is to schedule a set of packets from their source
nodes to the corresponding target nodes as quickly as possible. It is assumed
that the network is synchronized and that each network link can forward at most
one packet in a time step.

This problem is often split into two subproblems, namely the path selection
problem, in which one has to select routes for the packets, and the scheduling problem,
in which the packets have to be scheduled along their predetermined routes, and
conflicts between competing packets have to be resolved. The time needed for
scheduling all packets it at least Ω(C +D), where C is the congestion of the chosen
path system, i.e., the maximum number of paths that go through a single edge,
and D is the dilation, i.e., the length of the longest path taken by a packet. There
exists a lot of work (see, e.g., [LMR94, OR97]) that shows that one can in fact
solve the scheduling problem in time close to this lower bound. This is even
possible in a distributed scenario in which scheduling decisions are only based
on local information.

In contrast to this, there is very little work about path selection strategies for
general networks. Srinivasan and Teo show in [ST00] how to approximate an
optimum path system, i.e., a path system that minimizes C + D, in a centralized
manner. However, there are no distributed solutions to this problem for general
networks.

If the path selection is done using our framework, it is only guaranteed that
the congestion is nearly optimal, but there is no bound on the dilation. The
following lemma shows that it is indeed impossible for an oblivious algorithm
to get a good competitive ratio w.r.t. sum of congestion and dilation in general
undirected networks.

Lemma 2.26 There exist undirected networks in which no oblivious path selection algo-
rithm can achieve a good competitive ratio w.r.t. C +D.

Proof. Consider the network G` shown in Figure 2.8. There are two nodes a and
b that are connected via many disjoint paths; one path with length 1, and ` paths
with length `. Altogether G` has n = ` (` − 1) + 2 nodes, which gives ` = Ω(

√
n).

Now, consider an oblivious routing for G`. We show that such a scheme either
creates a very large congestion or a very large dilation for some routing problems.
The routing scheme defines a unit flow from a to b that defines how routing path
between a and b are chosen. We distinguish two cases according to the fraction of
this flow that traverses edge e = (a, b).

• Suppose that more than half of the flow traverses e. This means that more
than half of the routing paths between a and b contain e. Then the routing
problem that sends `2 packets from a to b creates an expected load of at
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Figure 2.8: A network in which an oblivious routing scheme cannot achieve a good
competitive ratio w.r.t. sum of congestion and dilation.

least `2/2 on edge e. Hence, for the congestion Cobl and dilation Dobl of
the oblivious routing scheme we get Cobl + Dobl ≥ `

2/2 = Ω(n). However,
routing the flow using only long paths gives a congestion of `2/` = ` and a
dilation of ` which means that an optimal routing algorithm would achieve
C + D ≤ 2 ` = O(

√
n). Hence, the competitive ratio of the oblivious routing

scheme is at least Ω(
√

n).

• Now, suppose that less than half of the flow traverses e. Then the expected
length of a path between a and b that is chosen according to the oblivious
routing scheme is at least `/2 = Ω(

√
n). Therefore the routing problem

that sends only one packet from a to b has an expected dilation of Ω(
√

n).
Clearly, this routing problem can be solved with congestion and dilation one,
by sending the message along e. Hence, in this case the oblivious routing
scheme has a competitive ratio of Ω(

√
n), as well.

Combining both cases gives the lemma.

Although, this result shows that there is no good oblivious routing scheme with
respect to sum of congestion and dilation, there exist other promising ways to
incorporate the length of routing path into the cost-measure. One possibility
to penalize long routing paths is to minimize the `p-norm of the link loads, i.e.,

p
√∑

e∈E L(e)p, where L(e) denotes the load of link e.
There are good oblivious routing schemes for p = 1, i.e., for the total commu-

nication load, and for p = ∞, i.e., for the congestion of the network links. It is an
interesting task for further research to design efficient, oblivious algorithms that
work for arbitrary p. However, it is not clear whether this is possible, or whether
also for the `p-norm a counterexample like that in Figure 2.8 exists.
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Improving the competitive ratio. The most challenging open problem concern-
ing the bisimulation approach is the question whether the competitive ratio guar-
anteed by the framework can be improved. Clearly, O(log n) is a lower bound
for general networks, since the lower bound of O(log n) for online routing on
the 2-dimensional mesh (see [MMVW97] and [BL97]) also holds for oblivious
routing, and hence also for the competitive ratio guaranteed by our framework.
Currently the best upper bound is O(log2 n log log n) due to Harrelson, Hildrum,
and Rao [HHR03].

This bound seems too unnatural in order to believe that it is tight. However,
conjecturing some value between O(log n) and O(log2 n log log n) as the true bound
would be pure speculation.

In the following we try to develop a vague intuition why it might be difficult
to improve the bound beyond O(log2 n) by using the technique of a hierarchical
network decomposition.

There are strong indications that a hierarchical framework that guarantees
a competitive ratio of c will lead to a c-approximation algorithm for minimum
bisection. As the best known upper bound for this problem is O(log2 n) for
general networks (see [FK00]) this might justify our assumption that improving the
competitive ratio to o(log2 n) is difficult. Note, however, that this argumentation
is very vague for the following reasons:

• We are not able to prove that a c-competitive hierarchical framework really
gives a c-approximation algorithm for minimum bisection. This is only a
conjecture and we supply some reasons why we believe that this conjecture
is true.

• There is no hardness result known for minimum bisection that makes it
impossible that, e.g., even a constant factor approximation for this problem
exists.

Nevertheless, the following description reveals an interesting relation be-
tween our framework and the minimum bisection algorithm presented by Feige
and Krauthgamar [FK00]. This approximation algorithm first computes a recur-
sive network decomposition. Then this decomposition is used to find a minimum
bisection in the graph G, i.e., a minimum capacity cut (S,V \S) in G such that both
sides S and V \ S contain n/2 nodes. We use the following notation from [FK00].
We refer to the two sides of a bisection as white W and black B. Further, we fix one
optimal bisection and denote it with (W∗,B∗). A labeling of the decomposition tree
assigns a color (either white or black) to each node of the tree.

Feige and Krauthgamar define a charge of a bisection with respect to a labeling
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such that the following holds

∀ bisections (W,B), labelings L : cap(W,B) ≤ chargeL(W,B)

∀ bisections (W,B), ∃ labelingL′ : cap(W,B) ≥ 1/O(log2 n) · chargeL′ (W,B) ,
(2.10)

where chargeL(W,B) denotes the charge of bisection (W,B) w.r.t. labeling L. Then
they present an algorithm that computes the combination of a bisection (W′,B′)
and a labeling L′ that minimizes the charge. The above inequalities give

cap(W′,B′) ≤ chargeL′ (W
′,B′)

≤ chargeL∗ (W
∗,B∗)

≤ O(log2 n) · cap(W∗,B∗) ,

which means that (W′,B′) is an approximate minimum bisection with approxima-
tion ratio O(log2 n). Informally speaking, Feige and Krauthgamar use the charge
of a bisection to approximate its size. This approximation has the advantage that
a bisection with minimum charge can be computed efficiently, while a bisection
with minimum size is very difficult to compute.

In the following we show that to some extend this approach works for our
hierarchical decomposition, as well. We show that we can define a charge for our
decomposition in such a way that inequalities (2.10) are fulfilled.

Assume that we have a hierarchical decomposition H that guarantees a com-
petitive ratio of δH. This means that for each edge e we have∑

H∈H: e∈H

cH ≤ δH ,

where cH denotes the maximum edge congestion for the solution of the CMCF-
problem of cluster H. We define a charge for a bisection w.r.t. a labeling of the
decomposition tree TH as follows.

Definition 2.27 The charge of a level ` cluster H ∈ H for bisection (W,B) w.r.t. labeling
L is

chargeH
L (W,B) =

 w`+1(H ∩ B) L(H) = “black”

w`+1(H ∩W) L(H) = “white”

i.e., the weight of those nodes in H that are colored according to the label of H. The charge
chargeL(W,B) of the bisection (W,B) is defined as

∑
H∈H chargeH

L (W,B).

We show that by this definition the charge fulfills inequalities (2.10).
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• First we show that the charge for a bisection (W,B) is always larger than its
size, i.e., larger than cap(W,B). Suppose an edge e contributes to cap(W,B).
This means that it connects a white and a black node in the bisection (W,B).
Assume that e is cut before or at level `+1 in the hierarchical decomposition,
i.e., both endpoints belong to the same level ` cluster but to different level
` + 1 clusters. Let H denote the level ` cluster that contains e.

Recall that w`+1(v) counts the capacity of edges that are adjacent to v
and are cut before or at level ` + 1. Depending on the labeling, the charge of
cluster H is either equal to the weight of white nodes, or equal to the weight
of black nodes in the cluster. However, in both cases the capacity of e is
counted, as it has a black and a white endpoint in the cluster. This shows
that the capacity of every edge between W and B contributes to the charge
of (W,B). Hence, chargeL(W,B) ≥ cap(W,B) holds for all labelings L.

• Now, we show that there is a labeling L′ such that chargeL′ (W,B) ≤ O(δH) ·
cap(W,B). We call a labelingα-consistent (compare [FK00]) for bisection (W,B)
if the following holds: if the label of a cluster H is white then w`+1(H∩W) ≤
α ·w`+1(H), and if the label of H is black then w`+1(H∩B) ≤ α ·w`+1(H). The
following lemma shows that we can choose L′ as any α-consistent labeling
for some constant α ∈ (0, 1).

Lemma 2.28 The charge of a bisection (W,B) with respect to an α-consistent label-
ing is at most δH/(1 − α) · cap(W,B) = O(δH) · cap(W,B).

Proof. Let L′ denote an α-consistent labeling for (W,B). Fix a cluster H on
some level `. Without loss of generality assume that the label of H is white.
Then the charge of cluster H is w`+1(W ∩ H). We compare this charge to
cap(W ∩H,B ∩H), i.e., the capacity of edges between W and B that lie in H.

The CMCF-problem for H requires that a demand of w`+1(W ∩H) (gen-
erated by the white nodes in H) is distributed evenly among all nodes (ac-
cording to the weight of these nodes). In particular this means that a (1− α)-
fraction of this demand has to cross the cut (W ∩H,B ∩H), since the nodes
in B ∩H have more than a (1 − α)-fraction of the total weight of H, because
the labeling L′ is α-consistent. Since the CMCF-problem can be solved with
congestion cH, this cut must have capacity at least 1/cH · (1−α) ·w`+1(W∩H),
which gives

chargeH
L′ (W,B) ≤

cH

1 − α
· cap(W ∩H,B ∩H).

When summing this inequality over all H we can utilize that an edge in the
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cut (W,B) is only counted for clusters it belongs to. We get

chargeL′ (W,B) =
∑

H

chargeH
L′ (W,B)

≤

∑
H

cH

1 − α
· cap(W ∩H,B ∩H)

=
∑

H

∑
e∈(W∩H×B∩H)

cH

1 − α
· b(e)

=
∑

e∈W×B

∑
H:e∈H

cH

1 − α
· b(e)

≤

∑
e∈W×B

δH
1 − α

b(e) = O(δH) · cap(W,B) ,

as desired.

The above results show that a bisection with minimum charge as defined in Defi-
nition 2.27 is an approximate minimum bisection with approximation ratio O(δH).
However, in order to obtain an O(δH)-approximation algorithm for minimum bi-
section, the combination of labeling and bisection that minimizes charge has to be
computed in polynomial time. Our hierarchy does not allow a dynamic program-
ming approach like that used in [FK00] because in contrast to the decomposition
of Feige and Krauthgamar, our decomposition does not have constant degree.11

Therefore, it seems very unlikely that it is possible to derive an approximation al-
gorithm for minimum bisection by directly using our hierarchical decomposition.

The reason for this is that the oblivious routing problem makes much higher
demands on the hierarchical decomposition than the bisection problem. These
demands do not allow decompositions with low degree and, hence, the approxi-
mation algorithm for minimum bisection on these decompositions becomes diffi-
cult. However it is possible to obtain a decomposition well suited for the bisection
problem by slightly changing our decomposition technique. We only change the
definition of weight such that w`(v) counts the capacity of all edges adjacent to v
that are cut at level ` (instead of edges that are cut before or at level `). The definition
of the CMCF-problem for a cluster remains the same (only the demands now de-
pend on the new definition of weight). The quality of a decomposition is measured
as before by the height and the maximum congestion of a CMCF-problem.

11In fact there are networks for which our decomposition has very large degree. To see this recall that
our clusters have to fulfill the precondition, which restricts the ratio between the capacity of edges
connecting a subset to the rest of its cluster, and the capacity of edges connecting the subset to
nodes outside of the cluster. When partitioning a complete graph this restriction prohibits clusters
of small size strictly larger than 1 (e.g., size

√
n). Therefore some of the tree nodes must have a

very high degree in a valid decomposition of the complete network.
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For this new decomposition the definition of charge as in Definition 2.27
still fulfills inequalities (2.10). Hence, a bisection with minimum charge is an
approximate minimum bisection. However, the new decomposition rules allow to
construct a decomposition with constant degree, because during the partitioning
process the precondition is not important any more.12 For this decomposition we
can apply the dynamic programming techniques from [FK00] and compute the
bisection with minimum charge in polynomial time. This gives an approximation
algorithm for minimum bisection.

Because of this relationship between the minimum bisection algorithm of
Feige and Krauthgamar and our decomposition, we believe that an improvement
of the hierarchical decomposition will lead to improved approximation guarantees
for minimum bisection. However, when only focusing on the oblivious routing
problem a hierarchical approach might not be needed. Perhaps it is possible
to improve the bound on oblivious routing by a careful analysis of the linear
programming formulation developed in Section 2.4. Moreover, Applegate and
Cohen [AC03] have presented an improved version that has a polynomial num-
ber of variables and a polynomial number of constraints. We think that further
research in this direction is a more promising approach for improving oblivious
routing than the improvement of the hierarchical decomposition.

12We can partition any connected subcluster according to the new rules (not only clusters that fulfill
the precondition). Therefore in each step a partitioning algorithm only needs to find a balanced,
binary partition for which the CMCF-problem can be solved efficiently. This gives constant degree.
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Cost-efficient
Data Management Strategies

In this section we investigate data management strategies for commercial net-
works, in which resources are not for free as in the model investigated in Chapter 2,
but are subject to fee. Such a scenario arises, e.g., in the area of Grid computing,
where resource may only be shared for a certain price, or even more apparent in
the area of web publishing, as web space usually is not for free, in particular, if
a certain quality-of-service is guaranteed.

The existence of monetary costs has crucial effects on a data management
strategy. For example the approach used in Chapter 2, which aims at utilizing the
available resources as best as possible, may lead to data management strategies
that induce very high monetary cost. We, therefore, present data management
strategies that try to minimize the commercial cost instead of the communication
cost for a given request pattern.

Our model mirrors, e.g., the perspective of a content provider that offers
information via pages in the WWW. For that purpose, the content provider has
to rent or buy some amount of the resources bandwidth and memory. We assume
that there is a fee per transmitted byte for each communication link and a fee
per stored byte for each memory module in the network. Then, the total cost
for the content provider is a function of the amount of bytes that are sent along
communication links or stored in memory modules.

In this cost based model we will present static data management strategies.
In the static scenario we are given read and write request frequencies for each
node-object pair. A data management strategy has to calculate a placement of
the objects to the memory modules, possibly with redundancy, such that the total
cost is minimized.

- 65 -
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3.1 The cost based model

The computer system is modeled by an undirected graph G = (V,E) with node set
V and edge set E such that the nodes represent the processors with their memory
modules, and the edges represent the links. The cost per stored data object for the
memory modules is described by a function cs : V 7−→ R+0 , where R+0 denotes
the set of nonnegative real numbers, and the cost per transmitted data object for the
links is described by a function ct : E 7−→ R+0 . For simplicity, we assume that all
data objects have uniform size. Thus, the functions cs and ct do not depend on
the data objects. However, all our results hold also in a non-uniform model, since
our algorithms place all objects independently from each other.

Let ct(v, v′) denote the cost per transmitted data object from a node v to a node
v′. We define

ct(v, v′) := min
path p from v to v′


∑

edge e lies on p

ct(e)

 .

Then, the function ct defines a metric space over the node set V, since ct is non-
negative, symmetric, and satisfies the triangle inequality. Therefore, ct can also
be seen as a distance function. To keep our algorithms and proofs simple and
clear we often use this view of ct.

The static data management problem is defined as follows. We are given a set X
of shared data objects and the read and write request frequencies for each node-object
pair which are described by the functions fr : V×X 7−→N0 and fw : V×X 7−→N0,
respectively. For each object x ∈ X, we have to determine a set of nodes holding
copies of x. Then, it remains to specify how each request r for x will be served.
The node issuing r is called the home of request r and is denoted with h(r).

• In case of a read request r, the home h(r) simply reads the nearest copy of x.
The node holding this copy is called the node serving request r and is denoted
with s(r). Note that for a given set of nodes holding copies of x a read request
is always served with optimal cost.

• In case of a write request r, an update is sent from h(r) to all copies of x.
Thus, we have to determine the edges along which this update is sent. This
is modeled by a multi-set of edges EUr which is called the update set of request
r. Edges in this update set can induce a multi-cast tree that branches at
arbitrary nodes. Note that we allow edges to appear several times in an
update set, however, this will never happen in an optimal update set. For
technical reasons, the node holding the copy of x that is nearest to h(r) is
again called the node serving request r and is denoted with s(r).
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The goal in the cost based model is to calculate a placement of the objects to the
memory modules such that the total cost is minimized. The total cost is defined
as follows.

• A copy of object x on the node v increases the total cost by cs(v).

• A read request r for object x increases the total cost by ct(h(r), s(r)).

• A write request r for object x increases the total cost by
∑

e∈EUr
EUr (e) · ct(e),

where EUr (e) denotes the number of appearances of edge e in the multi-set
EUr .

The model described above is slightly restrictive in the sense that it fixes
the update policy to a certain range. In particular, it does not include strategies
that allow only a fraction of the copies to be updated in case of a write, which,
e.g., is implemented in strategies using the majority trick introduced in [UW87].
However, all strategies using such techniques add time stamps to the copies. This
requires that there is some definition of uniform time among different nodes. Since
it is not clear how to realize this in an asynchronous setting, we restrict ourselves
to strategies that update or invalidate all copies in case of a write.

3.2 Related work and new results

Baev and Rajaraman [BR01] and Cidon, Kutten, and Soffer [CKS01] investigate
static data management in a model that is similar to our model. The major differ-
ence is that they only consider read requests. Baev and Rajaraman [BR01] study
static data management in arbitrary networks with memory capacity constraints.
They present an algorithm that calculates a constant factor approximation in poly-
nomial time. This algorithm is based on solving a linear programming relaxation
of the problem and rounding the obtained solution. Cidon, Kutten, and Soffer
[CKS01] study static data management in so-called directed trees. These networks
are rooted trees, in which all edges are directed towards the root. This means that
a node may only read a copy of a shared object that is placed on an ancestor in the
tree. They present an algorithm that calculates an optimal solution in polynomial
time, and can be executed in distributed fashion on the tree network in linear time.

Our static data management problem reduces to the uncapacitated metric
facility location problem, if only read requests are considered. The MaxSNP-
hardness of the uncapacitated metric facility location problem for arbitrary graphs
[GK99] implies the same for the static data management problem on arbitrary
networks. A large number of approximation algorithms are proposed for this
facility location problem. Shmoys, Tardos, and Aardal [STA97] present the first
constant factor approximation algorithm. Their algorithm is based on solving
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linear programming relaxations and rounding the obtained solutions. Korupolu,
Plaxton, and Rajaraman [KPR98] analyze a simple local search heuristic and show
that it achieves an approximation factor of 5 + ε, for any ε > 0. The current
best known approximation factor is 1.52 due to Mahdian, Ye, and Zhang [MYZ02].
Their algorithm uses the ideas of cost scaling, a greedy algorithm of Jain, Mahdian,
and Saberi [JMS02], and a greedy augmentation procedure of Charikar, Guha, and
Kuller [CG99, GK99].

Tamir [Tam96] presents an algorithm for the uncapacitated metric facility
location problem on trees. This dynamic programming algorithm calculates an
optimal solution in time O(|V|2) on a tree T = (V,E). Subsequently but indepen-
dently, Shah and Farach-Colton [SF02] have developed a dynamic programming
algorithm for tree networks that is very similar to our data management strategy.
However, they give a better analysis which results in an O(|V| log(|V|))-algorithm
for facility location on tree networks.

Our contribution

We introduce new deterministic algorithms for the static data management prob-
lem on trees and arbitrary networks. Our algorithms aim to minimize the total
cost in our cost based model. Our main result, presented in Section 3.3, is a com-
binatorial algorithm that calculates a constant factor approximation for arbitrary
graphs in polynomial time. Further, we present in Section 3.4 a dynamic program-
ming algorithm for trees that calculates an optimal placement of all objects in X on
a tree T = (V,E) in time O(|X| · |V| · diam(T) · log(deg(T))), where diam(T) denotes
the unweighted diameter of T, i.e., the maximum number of edges on a simple path
connecting two arbitrary nodes, and deg(T) denotes its maximum node degree.

3.3 The approximation algorithm for arbitrary
networks

In this section, we present a combinatorial algorithm that calculates a constant
factor approximation for the static data management problem on arbitrary graphs.
Our algorithm places all objects independently from each other. Thus, fix an
object x.

The focus in our algorithm lies on the calculation of a good placement for
object x. Given such a placement write accesses are handled as follows. A node
that issues a write request r for x, i.e., h(r), first sends a message to the closest
node holding a copy, i.e., s(r). Then an update of all copies of x via a minimum
spanning tree is initiated, i.e., s(r) sends out one message that is transmitted along
the branches of a minimum spanning tree connecting all nodes holding copies of
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x. Thus, the update set EUr contains all edges on the shortest path from h(r) to s(r)
and all edges of the minimum spanning tree which is used as an approximation
to the minimum Steiner tree. Note that edges on the path between h(r) and s(r)
can be contained twice in the multi-set EUr .

In order to show the quality of our solution we will compare it to an optimal
solution that fulfills the following additional constraints.

1. A write request r for x first sends a message to s(r) and then initiates the
update of all copies of x via a multi-cast tree. All write requests for x use the
same multi-cast tree Tx.

2. Each copy of x serves at least W requests, with W =
∑

v∈V fw(v, x) denoting
the total number of write requests for x.

A placement fulfilling these constraints is called restricted.
The following lemma ensures that there exists a restricted placement that has

close to optimal total cost.

Lemma 3.1 Let OPT and OPTW denote an optimal and optimal restricted placement,
respectively. Then

COPTW ≤ 4 · COPT ,

where COPTW and COPT denote the total cost of OPTW and OPT, respectively.

Proof. Suppose the optimum placement OPT is given together with the optimal
update sets for all requests. We will successively transform this placement into
a restricted placement as follows. First, we replace each update set EOPT

Ur
of the

optimum placement by the edge set of a minimum spanning tree (MST) connecting
all copies plus the edge set of the path from h(r) to s(r). The following claim shows
that the total cost of the placement is only doubled by this transformation.

Claim 3.2 Let OPT′ denote the new placement and EOPT′
Ur

its update set for request r.
Then ∑

e∈EOPT′
Ur

EOPT′
Ur

(e) · ct(e) ≤ 2 ·
∑

e∈EOPT
Ur

EOPT
Ur

(e) · ct(e) .

Proof. Let EST and EMST denote the edge set of a minimum Steiner tree and
a minimum spanning tree, respectively, connecting h(r) with all nodes holding a
copy of x, and let Ep denote the edge set of the path from h(r) to s(r). First, we show
that

∑
e∈EMST

ct(e) ≤ 2·
∑

e∈EST
ct(e)−

∑
e∈Ep ct(e). The following traversal of the Steiner

tree visits each edge in Ep once and all other edges twice, i.e., in combination with
the triangle inequality we get the above inequality. The traversal starts at h(r).
Then, it recursively visits, first, the neighbor nodes that are not incident to an edge
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in Ep, and, finally the single unvisited neighbor node that is incident to an edge in
Ep. Thus, we can conclude∑

e∈EOPT′
Ur

EOPT′
Ur

(e) · ct(e) ≤
∑

e∈EMST

ct(e) +
∑
e∈EP

ct(e)

≤ 2 ·
∑

e∈EST

ct(e)

= 2 ·
∑

e∈EOPT
Ur

EOPT
Ur

(e) · ct(e) ,

which yields the claim.

In a second step the placement OPT′ is transformed into a restricted placement
OPTW as follows.

• As long as the set C<W of copies that do not serve at least W requests is not
empty, do the following:

– Delete the copy c ∈ C<W with maximum tree distance from the root node
of the MST which is rooted at an arbitrary node. (The tree distance
between nodes u and v is the length of the weighted unique path that
connects u and v via edges of the MST.)

– Each request previously assigned to c is reassigned to its nearest remain-
ing copy in the network.

This algorithm terminates because the number of requests is larger than W
and thus the last copy will not be deleted. Obviously, the resulting placement is
restricted because each remaining copy serves at least W requests. It remains to
show that the additional cost that incur by reassigning requests to other copies is
small.

Each request that is reassigned from a copy on node v to another copy on
node v′ increases the total cost by ct(h(r), v′) − ct(h(r), v). Note that this holds for
write requests as well.

Let v f denote the father node of v according to the tree structure given by the
MST. Each reassignment increases the cost by

ct(h(r), v′) − ct(h(r), v) ≤ ct(h(r), v f ) − ct(h(r), v)

≤ ct(v, v f ) .

In the first step uses the fact that v′ holds the copy closest to h(r), and that v f also
holds a copy, because copies closer to the root node are deleted later. The second
step holds because of the triangle inequality.
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At most W requests are reassigned in a deletion step because otherwise the
copy would not have to be deleted since it would have served more than W
requests. The total cost increment caused by a deletion of a copy on node v is
therefore at most W · ct(v, v f ). Summing this over all nodes holding a copy yields
that the total cost increment is at most the cost expended by OPT′ for updating
objects. Together with Claim 3.2 this yields the lemma.

In the remainder of this section, we only consider restricted placements. We
split the total cost of such a placement into read, update, and storage cost which
are defined as follows. For a given placement P, the storage cost Cst

P is defined as
Cst

P :=
∑

v∈V holding a copy cs(v), the update cost Cup
P is defined as Cup

P :=W ·
∑

e∈ETx
ct(e),

with ETx denoting the edge set of the multi-cast tree connecting all copies of x and
W =

∑
v∈V fw(v, x) denoting the total number of write requests for x, and the

read cost Crd
P is defined as Crd

P =
∑

request r ct(h(r), s(r)). Furthermore, Crd
P (S) :=∑

r∈S ct(h(r), s(r)) denotes the read cost for a set S of requests.
Note that these definitions are only reasonable for restricted placements be-

cause the cost for a write request r (represented by the multi-set EUr ) is partitioned
into the cost for a multi-cast tree ETx and the cost for the path from h(r) to s(r).
The latter cost is defined to belong to the read cost. By defining the read cost this
way, we do not differentiate between read and write requests any more. The write
requests are only represented by their total number W. Their exact location in the
network does not influence the update cost. Obviously, for the total cost CP of a
restricted placement P holds CP = Crd

P + Cup
P + Cst

P .

3.3.1 Proper placements

In this section, we define proper placements and prove some helpful properties
of such placements. First, we introduce some notations and definitions. For each
node v and z ∈N, let Rz

v denote the set of the z requests that are closest to v, with
respect to the weighted distance ct. Further, let d(v, z) denote the average weighted
distance between v and the requests in Rz

v, i.e., d(v, z) := 1
z ·

∑
r∈Rz

v
ct(h(r), v). For

completeness, we define d(v, 0) := 0 and, for z >
∑

v∈V fr(v, x) + fw(v, x), we define
d(v, z) := ∞.

For each node v, we define the write radius rw(v) := d(v,W), where W denotes
the total number of write requests for x. Furthermore, we choose the storage radius
rs(v) ∈ R+0 and the storage number zs(v) ∈ N such that

(zs(v) − 1) · rs(v) ≤ cs(v) ≤ zs(v) · rs(v) and

d(v, zs(v) − 1) ≤ rs(v) ≤ d(v, zs(v)) .

This is done as follows. Obviously, zs(v) can be chosen such that (zs(v) − 1) ·
d(v, zs(v) − 1) ≤ cs(v) ≤ zs(v) · d(v, zs(v)). Then rs(v) is chosen from the interval
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[d(v, zs(v) − 1), d(v, zs(v))] such that the first inequality holds. If zs(v) = 1, then
there is the additional constraint rs(v) = d(v, zs(v)). Obviously, both inequalities
also hold in this setting.

Informally speaking, the intuition of the definitions above is that the write
radius and the storage radius of a node v give an indication of a suitable weighted
distance from v to the nearest copy in a placement. This is formalized in the
following. We call a placement proper if the copies are distributed according to
the write and storage radii of the nodes as follows.

1. Every node v has a copy in weighted distance at most k1 ·max{rw(v), rs(v)},
where k1 denotes a suitable constant.

2. Every pair of nodes u and v both holding a copy have at least weighted
distance 2k2 ·max{rw(u), rw(v)}, where k2 denotes a suitable constant.

In the remaining part of this section, we show that every proper placement
guarantees a constant approximation factor for the read and update cost. In
Section 3.3.2, we will present an algorithm that calculates a proper placement with
low storage cost. First, we derive a bound on the read cost of a proper placement.

Lemma 3.3 For the read cost Crd
PRO of a proper placement PRO holds

Crd
PRO ≤ (k1 + 1) · (Crd

OPTW
+ Cst

OPTW
) ,

where OPTW denotes an optimal restricted placement.

Proof. In order to show the lemma, we compare the proper placement PRO to the
optimal restricted placement OPTW . Suppose a copy is placed on node v in OPTW .
Let Sv denote the set of requests served by this copy in OPTW . We show that
Crd

PRO(Sv) ≤ (k1 + 1) · (Crd
OPTW

(Sv) + cs(v)). Then the theorem follows immediately
by summing over all request sets.

Let r ∈ Sv denote a request issued at node h(r) and served at node s(r) in PRO.
The weighted distance between h(r) and s(r) can be estimated by

ct(h(r), s(r)) ≤ ct(h(r), v′)
≤ ct(h(r), v) + ct(v, v′) ,

where v′ denotes the node holding the copy nearest to v in PRO. The first step
uses the fact that s(r) is the copy closest to h(r) in PRO and the second step holds
due to the triangle inequality.
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Then the read cost Crd
PRO(Sv) of PRO can be bounded by

Crd
PRO(Sv) =

∑
r∈Sv

ct(h(r), s(r))

≤

∑
r∈Sv

ct(h(r), v) +
∑
r∈Sv

ct(v, v′)

= Crd
OPTW

(Sv) + |Sv| · ct(v, v′)

≤ Crd
OPTW

(Sv) + |Sv| · k1 ·max{rs(v), rw(v)} .

Recall that ct(v, v′) ≤ k1 · max{rs(v), rw(v)} due to the first property of a proper
placement. Now, we distinguish two cases according to max{rs(v), rw(v)}.

• Suppose rw(v) = max{rs(v), rw(v)}.
Obviously, Crd

OPTW
(Sv) ≥ |Sv| · rw(v), since the copy on node v serves |Sv| ≥W

requests in OPTW . Then

Crd
PRO(Sv) ≤ Crd

OPTW
(Sv) + |Sv| · k1 ·max{rs(v), rw(v)}

≤ Crd
OPTW

(Sv) + k1 · |Sv| · rw(v)

≤ (k1 + 1) · Crd
OPTW

(Sv) .

• Suppose rs(v) = max{rs(v), rw(v)}.
In this case, we distinguish two subcases according to the cardinality of Sv.

– Suppose |Sv| < zs(v).
Then

Crd
PRO(Sv) ≤ Crd

OPTW
(Sv) + |Sv| · k1 ·max{rs(v), rw(v)}

≤ Crd
OPTW

(Sv) + (zs(v) − 1) · k1 · rs(v)

≤ Crd
OPTW

(Sv) + k1 · cs(v) .

Recall that (zs(v) − 1) · rs(v) ≤ cs(v) by the definition of zs(v) and rs(v).
– Suppose |Sv| ≥ zs(v).

Then

Crd
OPTW

(Sv) = |Sv| · d(v, |Sv|)

≥ |Sv| · d(v, zs(v))
≥ |Sv| · rs(v) .
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Thus, for the read cost of PRO holds

Crd
PRO(Sv) ≤ Crd

OPTW
(Sv) + |Sv| · k1 ·max{rs(v), rw(v)}

≤ Crd
OPTW

(Sv) + |Sv| · k1 · rs(v)

≤ (k1 + 1) · Crd
OPTW

(Sv) .

Altogether this yields the lemma.

Finally, we derive a bound on the update cost of a proper placement.

Lemma 3.4 For the update cost Cup
PRO of a proper placement PRO holds

Cup
PRO ≤ 2

(
k2

k2 − 1
· (Crd

PRO + Crd
OPTW

) + Cup
OPTW

)
,

where OPTW denotes an optimal restricted placement.

Proof. First, we prove the following claim showing that every copy in the proper
placement PRO serves at least a certain number of requests.

Claim 3.5 Every copy in a proper placement serves at least (1 − 1
k2

) ·W requests.

Proof. Suppose that a copy is placed on a node v in a proper placement. Each
request r with ct(h(r), v) ≤ k2 · rw(v) is served by the copy on v due to the second
property of a proper placement. Now, the claim follows from a simple averaging
argument.

Assume for contradiction that a copy on v serves less than (1− 1
k2

) ·W requests.

Then at least W − (1 − 1
k2

) ·W = W
k2

requests in RW
v have a weighted distance to v

larger than k2 · rw(v). This yields

rw(v) =
1
|RW

v |
·

∑
r∈RW

v

ct(h(r), v)

>
1
W
·

W
k2
· k2 · rw(v)

= rw(v) ,

which is a contradiction.

Suppose that a copy is placed on a node v in PRO and that the copy nearest
to v in OPTW is placed on v′. For a request r that is served by v in PRO, let s(r)
denote the node serving r in OPTW . Then

ct(v, v′) ≤ ct(v, s(r))
≤ ct(v, h(r)) + ct(h(r), s(r)) .
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The first step follows since v′ holds the copy closest to v in OPTW and the second
step holds due to the triangle inequality.

Let Sv denote the set of requests served by v in PRO. Summing the above
inequality over all requests in Sv yields

|Sv| · ct(v, v′) =
∑
r∈Sv

ct(v, v′)

≤

∑
r∈Sv

ct(v, h(r)) +
∑
r∈Sv

ct(h(r), s(r))

= Crd
PRO(Sv) + Crd

OPTW
(Sv) .

Now, we compare the update cost of PRO and OPTW . The additional cost in
PRO caused by the update messages for the copy on v is less than

W · ct(v, v′) ≤
k2

k2 − 1
· |Sv| · ct(v, v′)

≤
k2

k2 − 1
· (Crd

PRO(Sv) + Crd
OPTW

(Sv)) .

Recall for the first step that |Sv| ≥ (1 − 1
k2

) ·W due to Claim 3.5.
Summing this inequality over all nodes holding a copy in PRO and taking the

cost for updating all copies of OPTW into account yields that there exists a Steiner
tree for updating all copies of PRO with cost at most k2

k2−1 · (C
rd
PRO+Crd

OPTW
)+Cup

OPTW
.

Since we use a minimum spanning tree for updating, Cup
PRO ≤ 2( k2

k2−1 · (C
rd
PRO +

Crd
OPTW

) + Cup
OPTW

) which yields the lemma.

3.3.2 The approximation algorithm

In this section, we present the algorithm that computes a proper placement with
low storage cost. The algorithm consists of the following three phases.

1. An initial placement is calculated by an approximation algorithm for the
facility location problem. The input is the related facility location problem, i.e.,
the same input as for our data management problem with the difference that
all write requests become read requests. Hence, in this phase the update
cost is neglected.

2. Additional copies are added to the initial placement. As long as there exists
a node v whose nearest copy has a weighted distance to v larger than 5 · rs(v),
a new copy is stored on v.
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3. Copies that violate the second property of a proper placement are deleted
in the following way. All nodes holding a copy are scanned in ascending
order according to their write radii. When node v is processed according to
this order, a copy on node u is deleted if ct(u, v) ≤ 4 · rw(u).

The following theorem shows that the above algorithm calculates a constant
approximation. Algorithm and proof are not optimized to obtain a minimal
approximation factor, but to keep them as simple and clear as possible.

Theorem 3.6 The placement calculated by the above algorithm achieves a constant ap-
proximation factor for the static data management problem.

Proof. First, we show that the algorithm computes a proper placement, i.e., we can
conclude with lemmas 3.3 and 3.4 that the read and update cost of this placement
are optimal up to a constant factor. Finally, we show that the storage cost of this
placement is also optimal up to a constant factor.

Lemma 3.7 The above algorithm calculates a placement fulfilling the following properties.

• Every node v has a copy in weighted distance at most 29 ·max{rw(v), rs(v)} from v.
This is the first property of a proper placement with k1 = 29.
• Every pair of nodes u and v both holding a copy has at least weighted distance

4 ·max{rw(u), rw(v)}. This is the second property of a proper placement with k2 = 2.

Proof. First, we show that the second property holds. Let u and v denote two
nodes both holding a copy. Assume for contradiction that ct(u, v) ≤ 4 · rw(u).
Obviously, the copy on u would have been deleted in the third phase of the
algorithm, during the scan of node v.

In order to show the first property, we make the following observation. If a
node u holds a copy after the second phase of the algorithm, there exists a node
holding a copy in the final placement with weighted distance at most 4 · rw(u) to
u. Assume that the copy on node u is deleted in phase 3 during the scan of node
v that holds a copy. Thus ct(u, v) ≤ 4 · rw(u). Now, assume that the copy on node
v is deleted later in phase 3 during the scan of some node v′ that holds a copy.
Hence, ct(v, v′) ≤ 4 · rw(v) ≤ 4 · rw(v′). The last inequality holds since the nodes
are considered in ascending order according to their write radii. But in this case
the copy on node v′ would have been already deleted during the scan of node v,
since ct(v′, v) ≤ 4 · rw(v′). This is a contradiction.

Now, we bound the weighted distance from a node u to its closest copy in the
network. Let v and v′ denote the nodes holding the closest copy after the second
and third phase of the algorithm, respectively. Then

ct(u, v′) ≤ ct(u, v) + ct(v, v′)
≤ 5 · rs(u) + 4 · rw(v) ,
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because of the above observation and the triangle inequality.
To get the desired result we have to relate rw(v) to rw(u). Obviously, rw(v) ≤

ct(v,u) + rw(u), since rw(v) denotes the average weighted distance between v and
the set of those W distinct requests that are closest to v. Thus,

ct(u, v′) ≤ 5 · rs(u) + 4 · rw(v)
≤ 25 · rs(u) + 4 · rw(u) .

Hence, with k1 = 29 and k2 = 2 we get a proper placement.

It remains to derive a bound for the storage cost of the placement calculated
by the above algorithm.

Lemma 3.8 The storage cost of the placement calculated by the above algorithm is at
most f · (Cst

OPTW
+Crd

OPTW
), where f denotes the approximation ratio of the facility location

algorithm used in the first phase.

Proof. Let Cst
i and Crd

i denote the storage and read cost, respectively, of the
placement after the ith phase of the algorithm. Further, let Cst

FLP and Crd
FLP denote

the optimum storage and read cost, respectively, of the related facility location
problem. Then

Cst
3 ≤ Cst

2

≤ Cst
2 + Crd

2

≤ Cst
1 + Crd

1

≤ f · (Cst
FLP + Crd

FLP)

≤ f · (Cst
OPTW

+ Crd
OPTW

) .

The first inequality holds, since during the third phase copies are only deleted.
The third inequality will be shown in Claim 3.9. The last two inequalities are
obvious.

Claim 3.9 The sum of storage and read cost does not increase during the second phase of
the algorithm, i.e., Cst

2 + Crd
2 ≤ Cst

1 + Crd
1 .

Proof. In order to show the claim we need the following observation.

Observation 3.10 In weighted distance at most 2 · rs(v) from a node v, there are at least
dzs(v)/2e requests.

Proof. We call a request r with ct(h(r), v) ≤ 2 · rs(v) close to v. Assume for contradic-
tion that there are less than dzs(v)/2e close requests. In this case at most dzs(v)/2e−1
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requests are close to v. Therefore, at least (zs(v) − 1) − (dzs(v)/2e − 1) = bzs(v)/2c
requests from the set Rzs(v)−1

v are not close. Recall that |Rzs(v)−1
v | = zs(v) − 1. Then

d(v, zs(v) − 1) >
1

zs(v) − 1
·

(⌊
zs(v)

2

⌋
· 2 · rs(v)

)
≥ rs(v)
≥ d(v, zs(v) − 1) ,

which is a contradiction.

We will show that the cost always decreases whenever a copy is placed on
a node v during the second phase. Before a new copy is added every copy has
weighted distance larger than 5 · rs(v) from v. Hence, the dzs(v)/2e closest requests
to v have weighted distance larger than 3 · rs(v) to the nearest copy. Therefore the
read cost for these requests decreases by at least

dzs(v)/2e · 3 · rs(v) − dzs(v)/2e · d(v, dzs(v)/2e)
≥ dzs(v)/2e · 3 · rs(v) − dzs(v)/2e · rs(v)
= dzs(v)/2e · 2 · rs(v)
≥ zs(v) · rs(v)
≥ cs(v) .

The above inequalities follow directly from the choice of zs(v) and rs(v). Since the
decrease in read cost is larger than the storage cost cs(v) for the new copy on v,
the sum of read and storage cost does not increase during the second phase of the
algorithm, which yields the claim.

This completes the proof of the lemma.

Thus, the theorem follows from lemmas 3.3, 3.4, 3.7, and 3.8.

3.4 The optimal algorithm for trees

In this section, we present an algorithm that calculates an optimal placement for
the static data management problem on an arbitrary rooted tree T = (V,E). Our
algorithm places all objects independently from each other. Thus, fix an object x.

This section is organized as follows. First, we present an algorithm for the
read-only case, i.e., fw(v, x) = 0, for all v ∈ V.While this special case can be solved
by using the uncapacitated facility location algorithm of Tamir [Tam96] for trees,
we present a new algorithm which we then adapt to solve the general case of
reads and writes.
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3.4.1 The read-only case

In the following, we present an algorithm for the read-only case, i.e., fw(v, x) = 0,
for all v ∈ V. Let diam(T) denote the unweighted diameter of T, i.e., the maximum
number of edges on a path connecting two arbitrary nodes in T, and let deg(T)
denote its maximum node degree. For a node v, let Tv denote the subtree rooted at v,
i.e., the connected component containing v if the edge incident to v and its father
is removed. Then let |Tv| denote the number of nodes in Tv.

A placement P for a subtree Tv consists of a set C of nodes holding copies, a
set Ras

P of requests assigned to copies in Tv and a set Rout
P of outgoing requests,

i.e., requests that are not assigned to any copy in Tv. The cost of P is defined as
cost(P) :=

∑
u∈C cs(u) +

∑
r∈Ras

P
ct(h(r), s(r)) +

∑
r∈Rout

P
ct(h(r), v). Observe that this

definition of the cost of P is not equal to the cost for all requests issued in Tv plus
the cost for the copies stored in Tv, which would be the straightforward definition.
The advantage of our definition is that the cost of P does not depend on the
placement in T \ Tv. This allows us to use a dynamic programming approach to
compute the optimal cost for T.

For this approach we need the following additional notations and definitions.
For a placement P of a subtree Tv, we define the copy distance dP as the weighted
distance from node v to the closest copy in Tv. If there is no copy in Tv then we
define dP := ∞. A placement P of a subtree Tv is called naturally assigned if it
fulfills the following conditions.

• If a request r is assigned to a copy in Tv then this is the closest copy to h(r).

• All requests that pass a node are either assigned to the same copy in Tv or
belong all to the set of outgoing requests.

Obviously, there always exists an optimal placement for Tv that is naturally as-
signed.

Our tree algorithm is based on the key observation that the optimal placement
for a subtree Tv does not too heavily depend on the placement decisions made
for T \ Tv. In fact it only depends on a few parameters. Thus, only a restricted
number of placements for Tv have to be considered for calculating the optimal
placement for T. This observation can be formalized as follows. We call a set
STv of placements for Tv sufficient if in each naturally assigned placement for T
the placement for Tv can be replaced by a placement from STv without increasing
the total cost. Hence, only the placements in STv have to be considered by an
algorithm that searches for an optimal placement for T.

Lemma 3.11 For any subtree Tv exists a sufficient set STv with |STv | ≤ 2 · |Tv| + 1.

Proof. In order to show the lemma we first derive some characteristics of place-
ments that are contained in the sufficient set. For each D ∈ R+0 we define an optimal
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export placement ED
v for weighted distance D as

ED
v := arg min

placement P
{cost(P) + |Rout

P | ·D} .

Furthermore, for each R ∈ N0 we define an optimal import placement IR
v for request-

quantity R as

IR
v := arg min

placement P
{cost(P) + dP · R} .

We choose the set STv such that it contains an optimal export placement ED
v for

each D ∈ R+0 and an optimal import placement IR
v for each R ∈ N0. We have to

show that this can be done with only 2 · |Tv| + 1 different placements and that by
this definition STv is a sufficient set.

First, we prove that STv is sufficient. Suppose that we are given a naturally
assigned placement P for T. Let PTv denote the corresponding subplacement for Tv.
We have to replace the placement PTv by one of the placements from STv without
increasing the cost. We distinguish the following two cases: some requests issued
in T \Tv are served in Tv and some requests issued in Tv are served in T \Tv. Note
that no other case can occur in a naturally assigned placement.

• Suppose that R requests issued in T \ Tv are served in Tv.
If the subplacement PTv is replaced by IR

v , then the total cost changes by
cost(IR

v ) − cost(PTv ) + R · (dIR
v
− dPTv

) ≤ 0, according to the definition of IR
v .

• Suppose that requests issued in Tv are served in T \ Tv by a copy that has
weighted distance D from v.
If the subplacement PTv is replaced by ED

v , then the total cost changes by
cost(ED

v ) − cost(PTv ) + D · (|Rout
ED

v
| − |Rout

PTv
|) ≤ 0, according to the definition of

ED
v .

Finally, we prove that |STv | ≤ 2 · |Tv| + 1. First of all, |Tv| placements suffice
in order to contain all placements IR

v = arg minplacement P{cost(P)+ dP ·R}, for each
R ∈ N0, since the copy distance dP from v to its nearest copy in Tv can only take
|Tv| distinct values, and for every value of dP there is one optimal placement.

To prove that |Tv| + 1 placements suffice in order to contain all placements
ED

v = arg minplacement P{cost(P) + |Rout
P | · D}, for each D ∈ R+0 , we show in the

following that |Rout
P | can only take |Tv| + 1 distinct values for placements that

minimize cost(P) + |Rout
P | ·D.

Let D1 and D2 ∈ R
+
0 with D1 < D2. Define the placements P1 and P2 with

Pi := arg minplacement P{cost(P) + |Rout
P | · Di}, for each i ∈ {1, 2}. Further, we define

Ci := cost(Pi)+|Rout
Pi
|·Di. All requests of a node are either assigned to the same copy

or belong to the set of outgoing requests, since P1 and P2 are naturally assigned.
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The term |Rout
P | can take only |Tv| + 1 different values because if the requests

of a node u are assigned to a copy in P1, then these requests are assigned to a copy
in P2, as well. This will be shown in the following. Assume for contradiction that
the requests of u are assigned to a copy in P1 and belong to the set of outgoing
requests in P2. We call a subtree Tw ⊆ Tv self-contained if no request issued in Tw
is assigned to a copy in Tv \ Tw or belongs to the set of outgoing requests, and if
no request issued in Tv \ Tw is assigned to a copy in Tw. Obviously there exists
a self-contained subtree Tw that contains u in the placement P1. In placement P2
the subplacement of Tw has changed such that the requests from u belong to the
set of outgoing requests.

We show that by exchanging the different subplacements of Tw between the
placements P1 and P2 either C1 or C2 could be reduced which is a contradiction to
the definition of P1 and P2. Let Pw

1 and Pw
2 denote the subplacement used for Tw

in the placement P1 and P2, respectively. If the subplacement Pw
2 would be used

in the placement P1 the term C1 would change by

cost(Pw
2 ) + |Rout

Pw
2
| · (d(v,w) +D1) − cost(Pw

1 ) .

Similarly, if the subplacement Pw
1 would be used in the placement P2 then C2

would change by

cost(Pw
1 ) − |Rout

Pw
2
| · (d(v,w) +D2) − cost(Pw

2 ) .

Obviously, one of the above terms is smaller then 0, since D1 < D2. This is a
contradiction.

Altogether, we need only 2 · |Tv|+ 1 placements in order to guarantee that STv
contains an optimal import placement IR

v for each R ∈ N0 and an optimal export
placement ED

v for each D ∈ R+0 .

Now, we give a short sketch of the algorithm that computes an optimal
placement for T. Let vr denote the root node of T, i.e., T = Tvr . The algorithm
recursively computes the relevant parameters of the placements belonging to the
sufficient set STvr

. The relevant parameters of a placement Pv for Tv are parameters
that are used for computing the total cost of a placement for Tw ⊃ Tv that uses
Pv as subplacement for the subtree Tv. If Pv is an import placement the relevant
parameters are the cost of Pv, its copy distance, and the node holding the closest
copy to v in Tv. If Pv is an export placement the relevant parameters are the
cost of Pv, its number of outgoing requests, and an optimality interval IPv , i.e., for
D ∈ IPv , the placement Pv is the optimal export placement ED

v . Finally, the cost of
an optimal placement for T is the cost of E∞vr .

Theorem 3.12 The optimal placement for an arbitrary tree T can be computed in time
O(|T| · diam(T) · log(deg(T))).
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Proof. First, we restrict ourselves to binary trees. The following lemma gives
an upper bound on the time needed to compute the relevant parameters of all
placements in the sufficient set of a node, if the parameters of the placements, in
the sufficient sets of the children of this node are given. Finally, we generalize our
results to arbitrary trees.

Lemma 3.13 For a binary subtree Tv of T the relevant parameters of all placements in
the sufficient set STv can be computed in time O(|Tv|) if the relevant parameters of the
placements belonging to the sufficient sets of v’s children are given.

Proof. We code the set STv by a sequence of at most |Tv| import and |Tv|+ 1 export
tuples that describe the corresponding optimal import and export placements of
STv . An import tuple (CP, dP, vP) consists of the cost CP of the corresponding place-
ment P, the node vP holding the closest copy to v in Tv and the copy distance
dP := ct(v, vP). An export tuple (CP, |RP|, IP) consists of the cost CP of the corre-
sponding placement P, the number of outgoing requests |RP| and an optimality
interval IP.

Each sequence of import tuples is sorted according to their copy distances and
each sequence of export tuples is sorted according to their optimality intervals.
Note that the latter is possible, since, obviously, the optimality intervals do not
intersect. Now, we describe how to construct these sequences for a subtree Tv.

Suppose that v is a leaf node. For an import placement the subtree Tv must
contain a copy. Thus a copy has to be placed on v. The corresponding import
tuple is (cs(v), 0, v). For an export placement we distinguish two cases according
to the weighted distance D to a copy within T \ Tv.

• Suppose that D < cs(v)
fr(v) .

Then the optimal export placement has no copy on v. The corresponding
export tuple is (0, fr(v), [0, . . . , cs(v)

fr(v) )).

• Suppose that D ≥ cs(v)
fr(v) .

Then the optimal export placement has a copy on v. The corresponding export
tuple is (cs(v), 0, [ cs(v)

fr(v) , . . . ,∞)).

Now, suppose that v is an inner node. Let v1 and v2 denote the two children
of v and define edge e1 = (v1, v) and edge e2 = (v2, v). First, we describe how to
construct the tuples for the optimal import placements of STv .

Claim 3.14 The sorted sequence of import tuples of Tv can be computed in time O(|Tv|)
if the sorted sequences of import and export tuples of Tv1 and Tv2 are given.

Proof. In the proof of Lemma 3.11 it is shown that for each node u ∈ Tv there exists
at most one optimal import placement in which u holds the closest copy to v in Tv.
In the following we will denote this placement with Iu

v . This notation will coexist
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with the notation IR
v for the optimal import placement with request-quantity R.

Note that Iu
v = IR

v for R in a certain, possibly empty interval. We will construct an
import tuple for every placement Iu

v .
We start with u = v, i.e., the tuple (CIv

v
, dIv

v
, v) of the optimal import placement

Iv
v. The copy distance dIv

v
is 0. Furthermore, no requests enter the subtrees Tv1 and

Tv2 . Thus, the cost CIv
v

is cs(v)+C1+ct(e1) · |R1|+C2+ct(e2) · |R2|where (C1, |R1|, I1)

is the tuple of Ect(e1)
v1

and (C2, |R2|, I2) is the tuple of Ect(e2)
v2

.
Now assume without loss of generality that u ∈ Tv1 . Obviously, in this

case no request enters the subtree Tv2 , because the placements are naturally as-
signed. Thus, we can construct the optimal import placement Iu

v by combining
the placements Iu

v1
for Tv1 and Ect(u,v2)

v2
for Tv2 . The only problem is that all tuples

corresponding to some Iu
v , with u ∈ Tv1 , have to be computed in time O(|Tv|). In

order to do this we exploit that the tuples of Iu
v1

and ED
v2

are sorted. We traverse
the sequence of import tuples in order of increasing copy distance and search for
the required export tuple in the sequence of Tv2 . Since the tuples in this sequence
are sorted in order of their optimality intervals, we can use linear search and start
each search at the position the previous search stopped. Thus, we need only time
O(|Tv1 | + |Tv2 |) = O(|Tv|) for computing all Iu

v with u ∈ Tv1 . After all tuples have
been computed for each u ∈ Tv1 and each u ∈ Tv2 , there are two sorted sequences
of import tuples. These sequences have to be merged to get a sorted sequence for
Tv. This can be done in time O(|Tv|).

Now, we describe how to construct the tuples of the optimal export place-
ments of STv .

Claim 3.15 The sorted sequence of export tuples of Tv can be computed in time O(|Tv|) if
the sorted sequences of import and export tuples of Tv1 and Tv2 are given.

Proof. We start with the export tuple (CE∞v , |RE∞v |, IE∞v ) of the optimal export
placement E∞v . The number of outgoing requests |RE∞v | is 0, due to the cost function
cost(E∞v ) + |RE∞v | · ∞ of E∞v . Since |RE∞v | = 0 this placement can be viewed as an
import placement with request-quantity 0. The optimal cost for this placement,
i.e., cost(I0

v), can be computed due to Claim 3.14. Thus, the cost CE∞v is cost(I0
v).

The optimality interval IE∞v for this tuple will be computed later.
All other optimal export placements have some outgoing requests. Obvi-

ously, in such a placement no request enters the subtrees Tv1 and Tv2 , because
the placements are naturally assigned. Therefore each remaining optimal export
placement can be obtained by combining two optimal export placements, one of
Tv1 and one of Tv2 . More formally the export tuple for ED

v can be constructed from
the combination of the export tuples for ED+ct(e1)

v1
and ED+ct(e2)

v2
.

In order to compute all required combinations in time O(|Tv|) we first shift
the optimality intervals of all export tuples of Tv1 and Tv2 by −ct(e1) and −ct(e2),
respectively. Then the sequences of export tuples of Tv1 and Tv2 are traversed



www.manaraa.com

84 Cost-efficient Data Management Strategies

in increasing order of their shifted optimality intervals. If the shifted optimality
intervals of one export tuple (C1, |R1|, I1) of Tv1 and one export tuple (C2, |R2|, I2)
of Tv2 intersect, they are combined for a new export tuple (C, |R|, I) of Tv as follows.
The optimality interval I is simply the intersection of the two shifted optimality
intervals I1 and I2, the cost C is C1 +C2 + |R1| · ct(e1)+ |R2| · ct(e2), and the number
of outgoing requests |R| is |R1| + |R2| + fr(v).

Finally, it remains to determine the optimality interval for the export tuple
of E∞v and to adjust the sequence of export tuples, accordingly. This is done as
follows. For each export tuple E = (CE, |RE|, IE) with |RE| > 0 corresponding not
to E∞v we compute the weighted distance DE for which CE +DE · |RE| = cost(E∞v ).
If DE is smaller than the lower bound of IE the tuple E is deleted because the
corresponding export placement is not optimal. Obviously, there exists exactly
one tuple E∗ = (CE∗ ,RE∗ , IE∗ ) with DE∗ ∈ IE∗ . The upper bound of the optimality
interval IE∗ is set to D∗E. Further, the optimality interval of the export tuple
corresponding to E∞v is set to [DE∗ ,∞).

Altogether, all these computations can be done in time O(|Tv|) and give the
sorted sequence of export tuples of Tv.

Claims 3.14 and 3.15 yield the lemma.

Applying this lemma the relevant parameters of an optimal placement OPT
on a binary tree T can be computed in time O(

∑
v |Tv|) = O(|T| · diam(|T|)). To

compute the whole placement we use the fact that for any tree Tv there is at most
one export and one import tuple indicating that v holds a copy. Thus, if we know
which tuple from Tv is used to compute the cost of OPT, we know whether v holds
a copy in OPT.

This is done as follows. For every tuple T we memorize from which tuples
T1 and T2 it is constructed. This can easily be realized by assigning two pointers
to T pointing to T1 and T2. Finally, every tuple used to compute the cost of OPT
can be reconstructed by following the pointers starting at the tuple with optimal
cost.

Obviously, an arbitrary tree T can be simulated on a binary tree with O(|T|)
nodes and diameter O(diam(T) · log(deg(T))), which yields the overall running
time of O(|T| · diam(T) · log(deg(T))) for the computation of an optimal placement
for an arbitrary tree T.

3.4.2 The general case

In the following, we show how to adapt the algorithm of the previous section to
the general case where nodes can issue read and write requests. A write request
issued by node v increases the total cost by

∑
e∈EST

ct(e) where EST denotes the edge
set of the minimum Steiner tree connecting v with all nodes holding a copy. The
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write cost costwr(P) of a placement P for a subtree Tv = (VTv ,ETv ) is defined as the
cost due to write messages along edges in Tv, i.e., the write request issued by v
increases costwr(P) by

∑
e∈EST∩ETv

ct(e).
Unfortunately, this definition of the write cost of a placement for Tv depends

on the placement for T \ Tv. More precisely, it depends on whether at least one
copy is placed in T \ Tv or not. Let cost1

wr(P) and cost0
wr(P) denote the write

cost of P under the condition that at least one or no copy is placed in T \ Tv,
respectively. These definitions are independent of the placement in T \ Tv and
either costwr(P) = cost0

wr(P) or costwr(P) = cost1
wr(P).

Adopting the notations and definitions from the previous section we call a
set STv sufficient, if in each naturally assigned placement of T the placement of Tv
can be replaced by a placement in STv without increasing the total cost. Now, we
show that there exists a sufficient set with small cardinality.

Lemma 3.16 For any subtree Tv exists a sufficient set STv with |STv | ≤ 3 · |Tv| + 2.

Proof. Analogous to the proof of Lemma 3.11, we first characterize the placements
that are contained in the sufficient set. For each D ∈ R+0 , the set STv contains a
placement

ED
v := arg min

placement P
{cost(P) + cost1

wr(P) + |Rout
P | ·D}

which is called the optimal export placement for weighted distance D. In addition, the
set STv contains the optimal export placement Ev in which no node of Tv holds a copy.
Furthermore, for each R ∈N0, the set STv contains a placement

I0,R
v := arg min

placement P
{cost(P) + cost0

wr(P) + dP · R}

which is called the optimal 0-import placement for request-quantity R and a placement

I1,R
v := arg min

placement P
{cost(P) + cost1

wr(P) + dP · R}

which is called the optimal 1-import placement for request-quantity R.
Now, we will prove thatSTv is sufficient. Suppose that we are given a naturally

assigned placement P for T. Let PTv denote the corresponding subplacement for
Tv. We have to replace the placement PTv by one of the placements from STv
without increasing the cost. The proof is similar to the proof of Lemma 3.11. In
the following we only list the different cases and specify what placement from STv
has to be selected for each case. It is easy to verify for each case that the respective
selection does not increase the total cost.
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The different cases are as follows:

• Some requests issued in T \ Tv are served in Tv and T \ Tv contains at least
one copy.

Replace PTv by I1,R
v for the appropriate value of R.

• Some requests issued in T \ Tv are served in Tv and T \ Tv contains no copy.

Replace PTv by I0,R
v for the appropriate value of R.

• Some requests issued in Tv are served in T \ Tv and Tv contains at least one
copy.
Replace PTv by ED

v for the appropriate value of D.

• All requests issued in Tv are served in T \ Tv and hence, Tv contains no copy.
Then PTv equals Ev, i.e., the placement in which no node of Tv holds a copy.

Finally, we prove that |STv | ≤ 3 · |Tv|+2. First of all, 2 · |Tv| placements suffice in
order to contain all placements I0,R

v = arg minplacement P{cost(P)+cost0
wr(P)+dP ·R}

and I1,R
v = arg minplacement P{cost(P)+ cost1

wr(P)+ dP ·R}, for each R ∈N0, since the
copy distance dP from v to its nearest copy in Tv can only take |Tv| distinct values,
and for every value of dP there is one optimal placement.

The proof that |Tv| + 1 placements suffice in order to contain all placements
ED

v = arg minplacement P{cost(P)+cost1
wr(P)+|Rout

P |·D}, for each D ∈ R+0 , is analogous
to the proof of Lemma 3.11. Adding the placement Ev gives |STv | ≤ 3 · |Tv| + 2.

Now, we give a short sketch of the algorithm that computes an optimal
placement for T. Let vr denote the root node of T, i.e., T = Tvr . The algorithm
recursively computes the relevant parameters of the placements belonging to the
sufficient set STvr

. The relevant parameters of a placement Pv for Tv are parameters
that are used for computing the total cost of a placement for Tw ⊃ Tv that uses Pv
as subplacement for the subtree Tv. If Pv is an i-import placement with i ∈ {0, 1}
the relevant parameters are the costs cost(Pv) and costi

wr(Pv), the copy distance dPv ,
and the node vPv holding the closest copy to v in Tv. If Pv is an export placement the
relevant parameters are the costs cost(Pv) and cost1

wr(Pv), the number of outgoing
requests |Rout

Pv
|, and an optimality interval IPv . Finally, the cost of an optimal

placement for T is the cost of E∞vr .
To compute the whole placement we use the fact that for any tree Tv there are

at most one export tuple and at most two import tuples indicating that v holds a
copy. Thus, if we know which tuple from Tv is used to compute the cost of OPT,
we know whether v holds a copy in OPT.

Theorem 3.17 The optimal placement for an arbitrary tree T can be computed in time
O(|T| · diam(T) · log(deg(T))).
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STv STv1
STv2

copy on v

Ev Ev1 Ev2 no

ED
v ED+ct(v,v1)

v1
ED+ct(v,v2)

v2
no

I0,v
v = I1,v

v

Ect(v,v1)
v1
Ev1

Ect(v,v1)
v1
Ev1

Ect(v,v2)
v2

Ect(v,v2)
v2
Ev2
Ev2

yes

I0,u
v with u ∈ Tv1 I0,u

v1
Ev2 no

I1,u
v with u ∈ Tv1 I1,u

v1
Ect(u,v2)

v2
no

I0,u
v with u ∈ Tv2 Ev1 I0,u

v2
no

I1,u
v with u ∈ Tv2 Ect(u,v1)

v1
I1,u
v2

no

Table 3.1: Combinations of placements from STv1
and STv2

that have to be consid-
ered for computing all placement in STv .

Proof. The proof is analogous to the proof of Theorem 3.12. We sketch the
algorithm for binary trees. Let v denote an internal node of T and let v1 and v2
denote the children of v. The algorithm computes the relevant parameters for the
placements in STv by combining relevant parameters for placements from STv1
and STv2

. This has to be done in time O(|Tv|).
One approach would be to first combine each subplacement from STv1

with
each placement from STv2

and then, to choose the placements which belong to STv
from this collection of placements. But then the algorithm would have to consider
2 · |STv1

| · |STv2
| different placements for Tv. The factor of 2 is due to the fact that

the algorithm can decide to place a copy on v or not. This could not be done in
time O(|Tv|).

Therefore, the algorithm exploits the fact that only few combinations of sub-
placements have to be considered. Table 3.1 contains the combinations of sub-
placements that are tested for a placement in STv . In this table Ii,u

v denotes the
optimal i-import placement, with i ∈ {0, 1}, in which the node u ∈ Tv holds the
closest copy to v in Tv. Obviously, there is only one optimal placement with this
property for each u ∈ Tv.

Table 3.1 shows that for each placement from STv only a constant number of
combinations have to be computed. In order to prove that the algorithm needs
time O(|Tv|) for computing the relevant parameters for the placements in STv it
remains to show that each combination can be computed in amortized constant
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time. This part of the proof is similar to the proof of Theorem 3.12 and is omitted
since it gives no new algorithmic insights.

3.5 Conclusions

We have devised static data management strategies that aim to minimize the mon-
etary cost induced by a placement of shared objects in a distributed system. Our
strategies for tree networks calculate the optimal placement in polynomial time
via dynamic programming. For general topologies we presented an algorithm that
achieves a constant approximation ratio with respect to the cost-optimal solution.

For future work it would be very interesting to extend our cost-based model
to a dynamic scenario in which, analogous to the model of Chapter 2, the read and
write requests are not known in advance but arrive online during the running time
of a parallel application. If storing of data is for free, i.e., cs(v) = 0 for all nodes
v ∈ V, this model is equivalent to models that minimize the total communication
load in the network (see, e.g., [ABF93]).

However, if storing of data is not for free, completely new aspects have to
be considered by a data management strategy. A reasonable approach is, e.g., to
charge the fee for storing data with respect to the amount of utilized memory
and with respect to the time this memory is used. In such a scenario, it is not
sufficient to simply model the requests via a sequence (i.e., to specify only the
order among requests), but it is necessary to model “time” in some way, as this is
required for calculating the fee. Furthermore, copies of shared object may have
to be migrated even if there is no current request to the corresponding object,
because copies may have to be moved to a “cheaper” place. These issues make
the development of cost-based data management strategies in dynamic scenarios
a very challenging task.

Further interesting modifications of our model are, e.g., the inclusion of mem-
ory capacity constraints and the development of distributed algorithms that only
use local information.

For tree networks it has been shown (see [SF02]) that a dynamic programming
approach, very similar to our strategy, enables a facility location algorithm with
running time O(n log n). It is interesting whether a similar approach can be used
to improve the running time for k-median algorithms on trees, as well. Currently,
the best known algorithm (see [Tam96]) for k-median has running time of O(k ·n2),
which gives a fairly large gap between the fastest facility location algorithm and
the fastest k-median algorithm. Perhaps this gap can be narrowed by transferring
our techniques for facility location to the k-median problem. A key problem for
such a transfer is the notion of a sufficient set as defined on page 79. It has to
be shown that also for the k-median there is always a sufficient set with small
cardinality. This is more involved than in the case of facility location, since the
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restriction of at most k open facilities in the whole tree, increases the number of
placements that have to be considered for a subtree, as the optimal placement
depends on the number of facilities that may be opened.
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Appendix

A.1 Proof of Claim 2.16 on page 45

Claim A.18
out(U∗)

w`+1(U∗)
≤ 4λ ·

cap(A,B)
w`+1(A)

.

Proof. Let ` denote the level of the cluster H. In order to prove the claim we
have to relate cap(A,B) to out(U∗). We do this by successively relating cap(A,B) to
w`(U∗ ∩A), w`(U∗ \A), and cap(U∗,H \U∗). Since out(U∗) = w`(U∗ ∩A)+w`(U∗ \
A) + cap(U∗,H \U∗) (see Figure A.1) we get the desired relation.

Firstly, we can exploit that H fulfills the precondition and |A| ≤ 1
2 |H|. This

gives
λ · cap(A,B) ≥ w`(A) ≥ w`(U∗ ∩ A) , (A.1)

which gives a lower bound on cap(A,B) in terms of w`(U∗ ∩ A).
For deriving the other two relations we observe that the subclusters Hi also

fulfill the precondition. Further, from the definition of IS and IL it follows that
Ai ≤

3
4 |Hi| for i ∈ IS, and Bi ≤

3
4 |Hi| for i ∈ IL. Therefore we can apply the

precondition for set Ai if Hi has a small intersection with A, and for Bi if Hi has a
large intersection with A (and, hence, a small intersection with B). This gives the
following inequalities.

∀i ∈ IS (λ + 1) · cap(Ai,Bi) ≥ w`+1(Ai) + cap(Ai,Bi)= out(Ai) (∗)

∀i ∈ IL (λ + 1) · cap(Ai,Bi) ≥ w`+1(Bi) + cap(Ai,Bi) = out(Bi) (∗∗)

We will utilize these inequalities to relate cap(A,B) to w`(U∗\A) and cap(U∗,H\U∗),
respectively.
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A B

U
∗

H

w` (U∗ ∩ A)

cap(U∗,H \U∗)

w`(U
∗ \ A)

Figure A.1: The edges leaving U∗ either contribute to w`(U∗ ∩ A), w`(U∗ \ A), or
cap(U∗,H \U∗).

First, we obtain,

(λ + 1) · cap(A,B) ≥ (λ + 1) ·
∑
i∈IL

cap(Ai,Bi) + (λ + 1) ·
∑
i∈IS

cap(Ai,Bi)

≥

∑
i∈IL

w`+1(Bi) +
∑
i∈IS

out(Ai) .

Utilizing w`+1(Bi) ≥
∑

i∈IL

w`(Bi) = w`(]i∈ILBi) = w`(U∗ \ A), gives

(λ + 1) · cap(A,B) ≥ w`(U∗ \ A) +
∑
i∈IS

out(Ai) , (A.2)

which relates cap(A,B) to w`(U∗ \ A).

Now, we derive a relation between cap(A,B) and cap(U∗,H \U∗):

cap(U∗,H \U∗) = cap
(⊎

i∈IL
Hi,

⊎
i∈IS

Hi

)
= cap

(⊎
i∈IL

Ai,
⊎

i∈IS
Bi

)
+ cap

(⊎
i∈IL

Ai,
⊎

i∈IS
Ai

)
+ cap

(⊎
i∈IL

Bi,
⊎

i∈IS
Hi

)
≤ cap(A,B) +

∑
i∈IS

out(Ai) +
∑
i∈IL

out(Bi) .

Applying inequalities (∗) and (∗∗) to out(Ai) and out(Bi), respectively, gives the
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following relation between cap(A,B) and cap(U∗,H \U∗):

cap(U∗,H \U∗) ≤ cap(A,B) + (λ + 1) ·
∑
i∈IS

cap(Ai,Bi) + (λ + 1) ·
∑
i∈IL

cap(Ai,Bi)

≤ cap(A,B) + (λ + 1) · cap(A,B)

= (λ + 2) · cap(A,B)
(A.3)

Now, we combine equations (A.1), (A.2), and (A.3) in order to obtain the relation
between cap(A,B) and out(U∗).

out(U∗) +
∑
i∈IS

out(Ai) ≤ cap(U∗,H \U∗) +w`(U∗ ∩ A)

+w`(U∗ \ A) +
∑
i∈IS

out(Ai)

≤ cap(A,B) ((λ + 2) + λ + (λ + 1))

≤ 4λ · cap(A,B)

(A.4)

Here, we utilized λ ≥ 3 for the last step.

Finally, we are able to estimate the ratio w`+1(A)
cap(A,B) , as needed for the claim.

w`+1(A)
cap(A,B)

=

∑
i cap(Ai,Hi)
cap(A,B)

=

∑
i∈IL

cap(Ai,Hi) +
∑

i∈IS
cap(Ai,Hi)

cap(A,B)

≤ 4λ ·

∑
i∈IL

cap(Ai,Hi) +
∑

i∈IS
cap(Ai,Hi)

out(U∗) +
∑

i∈IS
out(Ai)

.

So far, we have utilized Equation (A.4), i.e., the relation between cap(A,B) and
out(U∗). Now, we further exploit that cap(Ai,Hi) ≤ out(Ai) and that cap(Ai,Hi) ≤
cap(Hi,Hi). We get

w`+1(A)
cap(A,B)

≤ 4λ ·

∑
i∈IL

cap(Hi,Hi) +
∑

i∈IS
out(Ai)

out(U∗) +
∑

i∈IS
out(Ai)

,
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which can be further simplified to

w`+1(A)
cap(A,B)

= 4λ ·
w`+1(U∗) +

∑
i∈IS

out(Ai)

out(U∗) +
∑

i∈IS
out(Ai)

≤ 4λ ·
w`+1(U∗)
out(U∗)

,

where the last inequality follows since w`+1(U∗) ≥ out(U∗). This finishes the proof
of the claim.
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